| \Rightarrow |
Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|--|------------------------------------|----------------|---------------|--| | 1.0 1) | Ground, engine (W11) (connection point for ground wires) Model 124 | N3
19 — (— • Cir. 30 | | 11 – 14 V | Wiring, Ground connection W11 (Figure 21) loose. | | | Model 129 | N3 19 — (| | 11 – 14 V | Wiring, Ground connection W11 (Figure 21) loose. | | 1.1 | Ground, battery (W10) Model 124 | N3
6 — C | | 11 – 14 V | Wiring, Ground connection W10 (Figure 20) loose. | | | Ground, component compartment (W16) Model 129 | N3
6— C X4/10
cir. 30 | | 11 – 14 V | Wiring, Ground connection W16 (Figure 23) loose. | On-off ratio 100% when measured with on-off ratio tester. | \Rightarrow | ** | Test scope | Test con | nection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|---|--------------------|-----------------------|-------------------------|--|---------------|--| | 2.0 1) | | CFI control module (N3) Voltage supply, Circuit 30a | 19 (| N3
 |) —1 | _ | 11 – 14 V | Wiring, Overvoltage protection relay module (K1/1) fuse, K1/1. | | 2.1 | | Wiring from N3 to K1/1 | N3
1 — (| <u>~</u> -@+ <u>→</u> | | CFI control module (N3) unplugged. | < 1 Ω | Wiring. | | 2.2 | | Wiring from circuit 30 to K1/1 | N3
6 — | <u>~¯(V)</u> ±► | K1/1
) — 1 | _ | 11 – 14 V | Wiring. | | 2.3 | | Wiring from circuit 30 to K1/1 | X4/10
cir. 30 | <u>~</u> | K1/1
> ─ 1 | _ | < 1 Ω | Wiring. | | 3.0 1) | | CFI control module (N3) Voltage supply, Circuit 87E | 19 — c | N3
 | | Ignition: ON Overvoltage protection relay module (K1/1) plugged in. | 11 – 14 V | Wiring, Connected components are shorted to circuit 31 (ground). | On-off ratio 100% when measured with on-off ratio tester. | \Rightarrow | ** | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|--|-----------------|---------------------|---------------|---| | 4.0 | | Engine systems control module (N16) Ground | N16
4 — C | _ | 11 – 14 V | Wiring, Loose ground connection: Model 124: W10 (Figure 20) Model 129: W16 (Figure 23). | | 5.0 | | Engine systems control
module (N16)
Voltage supply
Circuit 30 | N16
 | _ | 11 – 14 V | Wiring, Loose wire at terminal block, terminal 30/61 (battery) (X4/10): Model 124: (Figure 25) Model 129: (Figure 26) | | 6.0 | | Engine systems control module (N16) Voltage supply Circuit 15 unfused | N16
 | Ignition: ON | 11 – 14 V | Wiring, Loose wire at fuse and relay box (F1), plug connection: Model 124: Interior/engine connector (X26) (Figure 30) Model 129: Multi-function connector block (X30/1) (Figure 31). | | 7.0 | | Engine systems control
module (N16)
Voltage supply
Circuit 15 | N16
 | Ignition: ON | 11 – 14 V | Wiring, Loose wire at fuse and relay box (F1), plug connection: Model 124: Interior/engine connector (X26) (Figure 30) Model 129: Multi-function connector block (X30/1) (Figure 31). | | \Rightarrow |
Test scope | Test conne | ection | | Test condition | Nominal value | Possible caus | e/Remedy | |---------------|-----------------------------------|------------|---------|--------------|---|---------------------------|---|---| | 8.0 | Fuel pumps (M3m1, M3m2) Operation | 4—• | N16
 |) —21 | Ignition: OFF Engine systems control module (N16) unplugged. Ignition: ON | 11 – 14 V | Wiring,
FP harness co
Model 124:
Model 129:
M3m1 or M3m | onnector (X36):
(Figure 32)
(Figure 33)
12. | | 9.0 | Fuel pumps (M3m1, M3m2) Control | 4—• | N16
 | | N16 plugged in. Connector 2 of DI control module unplugged (Figure 7). Engine: Crank | 10 ± 2V
while cranking | ⇒ 9.1,
N16. | | | 9.1 | Control signal,
Circuit 50 | 4—(| N16 | | Connector 2 of DI control
module unplugged
(Figure 7).
Engine: Crank | 10 ± 2V
while cranking | Wiring,
Model 124:
Model 129: | Interior/engine
connector (X26)
(Figure 30)
defective,
AT/engine
connector(X22/2)
(Figure 29)
defective. | | \Rightarrow | | Test scope | Test connec | ction | Test condition | Nominal value | Possible cause/Remedy | |---------------|------|--|-----------------------|--|--|--|---| | 10.0 | 9 1) | Electrohydraulic
actuator (Y1)
Current check | 1—(- | Y1
¯ (≜ ⁺►) — 2 | Connect test cable 102 589 04 63 00 to Y1. Ignition: ON | Engine 104:
20 mA
Engine 119:
75 mA | Wiring to CFI control module (N3), Y1. | | 11.0 1) | | Electrohydraulic
actuator (Y1)
Malfunction circuit | 1 | N3
 | Ignition: OFF
Unplug N3 | 19.5 ± 1 Ω | Wiring,
Y1. | | 11.1 | | Resistance | 1 = | Y1
@+ 2 | Ignition: OFF
Y1 unplugged | 19.5 ± 1 Ω | Y1. | | 11.2 | | Wiring | N3
37 — (= 55 — (| Y1
- '@⁺►) — 1
- '@⁺►) — 2 | Ignition: OFF
N3 and Y1 unplugged. | < 1 Ω | Wiring, Wires in connector (Y1) reversed. | ¹⁾ On-off ratio 90% when measured with on-off ratio tester. | \Rightarrow | | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|---------|--|--|---|---------------|---| | 12.0 | 2 1) 2) | WOT/CTP switch (S29/2) Malfunction circuit – WOT contact | 19— (——————————————————————————————————— | Disconnect AT control pressure cable on vehicles without ASR. | ∞ Ω
< 1 Ω | Wiring, WOT contact, S29/2, Polarity reversed at connector S29/2x1: Engine 104: (Figure 18), Engine 119: (Figure 19). | | 12.1 | | WOT contact | | Accelerator pedal in WOT | ∞ Ω
< 1 Ω | Adjust or replace S29/2. | On-off ratio 20% when measured with on-off ratio tester. ²⁾ On-off ratio 10% when measured with on-off ratio tester. | \Rightarrow | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|------------|----------------------------|---|---------------|--| | 12.2 | Wiring | S29/2x1 | Ignition: OFF CFI control module (N3) unplugged. | < 1 Ω | Wiring. | | 12.3 | Wiring | W11 S29/2x1
⊥ - ② →) 2 | Ignition: OFF | < 1 Ω | Wiring, Ground connection (W11) loose (Figure 21). | | \Rightarrow | | Test scope | Test con | nection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|------------------|--|------------------------|------------------------------|---------------------------------------|---|---|---| | 13.0 | 3
28
29 1) | ECT sensor (B11/2) Malfunction circuit | 35 — ఁ | N3
 |) — 16 | Ignition: ON | See Table I | Wiring,
B11/2,
CFI control module (N3). | | 13.1 | | B11/2 | 1 | B11/2
 | - _3 | B11/2 connector unplugged.
Measure connections
diagonally and compare
both values (Figure 12). | See Table I (both values must be the same). | B11/2. | | 13.2 | | Wiring | N3
16 — C
35 — C | <u>-</u> -@+
<u>-</u> -@+ | B11/2
) — 2
) — 4 | Ignition: OFF N3 connector unplugged. Terminal layout of connector (B11/2, Figure 12). | < 1 Ω | Wiring. | On-off ratio 30% when measured with on-off ratio tester. | \Rightarrow | | Test scope | Test connection | on | Test condition | Nominal value | Possible cause/Remedy | |---------------|----------------|--|--|-------------------------|---|---|---------------------------------| | 14.0 | 4 1) 2) | VAF sensor (B2)
Malfunction circuit | [<u> </u> | | Engine: at Idle
and at operating
temperature. | 4.6 –5.1 V | B2,
CFI control module (N3), | | | | | | √3
Y) → → 52 | | 0. 55 – 0.95 V | Wiring,
N3
B2. | | 14.1 | | B2 | | <u>-</u> 3 | Ignition: OFF Connector on B2 unplugged. | 3.6 – 4.4 kΩ | B2. | | 14.2 | | B2 | | | Slowly deflect air flow sensor plate by hand. | Ω-value increases continuously up to 2/3 of travel, then decreases again. | B2. | | 14.3 | | Wiring | N3
34 — (— ()
52 — ()
31 — () | | Ignition: OFF N3 connector unplugged. | < 1 Ω | Wiring. | ¹⁾ On-off ratio 40% when measured with on-off ratio tester. ²⁾ On-off ratio 10% when measured with on-off ratio tester. | \Rightarrow | | Test scope | Test connection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|-----|-------------------------------------|---|---------------|--|---------------|--| | 15.0 | 71) | TN-signal | N3
 |) — 27 | Engine: at Idle | 5 – 7 V | Wiring, ⇒ 16.2, TN-signal implausible, other connected components defective. | | 15.1 | | Wiring | N3
27 -(| N16 | Ignition: OFF | < 1 Ω | Wiring. | | 16.0 | | TN-signal | N16
 |) — 16 | Engine: at Idle | 5 – 7 V | Wiring, DI control module (N1/3). | | 16.1 | | TN-signal wire | N1/3
4 — (— <u>→</u> <u>①</u> + <u>→</u> | | Ignition: OFF Connector (A) of N1/3 unplugged (Figure 7). | < 1 Ω | Wiring. | | 16.2 | | Engine systems control module (N16) | N16
 |) —11 | Ignition: OFF Connector (A) of N1/3 connected. Engine: at Idle | 5 – 7 V | N16. | ¹⁾ On-off ratio 70% when measured with on-off ratio tester. #### **Electrical Test Program – Test** 2.1 | \Rightarrow | ** | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|--|---------------------|--|-------------------|--------------------------| | 17.0 | 1) | WOT/CTP switch (S29/2) Malfunction circuit – CTP contact | | Ignition: OFF CFI control module (N3) unplugged. | | Wiring, CTP contact. | | | | | | Accelerator pedal in CTP | < 1 Ω | | | | | | | Depress accelerator pedal | ∞ Ω | | | 17.1 | 22 | CTP contact | 1 2 | Ignition: OFF Connector (S29/2x1) unplugged. Engine 104: (Figure 18) Engine 119: (Figure 19) Accelerator pedal in CTP Accelerator pedal in WOT position | < 1 Ω
∞ Ω | Adjust or replace S29/2. | | 17.2 | | Wiring | N3
S29/2x1
47 | Ignition: OFF
N3 unplugged. | < 1 Ω | Wiring. | ¹⁾ On-off ratio 10% when measured with on-off ratio tester. | \Rightarrow | | Test scope | Test con | nection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|-------|----------------------|---------------------|------------------------|-------------|---|---|---| | 17.3 | | Wiring | W11 | <u>~</u> | | Ignition: OFF Connector (S29/2x1) unplugged. | < 1 Ω | Wiring, Ground connection (W11) loose (Figure 21). | | 18.0 | 14 1) | Vehicle speed signal | 19 ~ (| N3
 | → 29 | Ignition: ON
Roll vehicle approx. 1 | < 1 V Needle oscillates: 0 – 12 V (0 – 9 V with consumers) | Wiring, Model 124: Hall-effect speed sensor (B6), Model 129: Electronic speedometer (A1p8). | | 18.1 | | Wiring Model 124 | N3
19 — (| <u>~</u> ¯@ <u>+</u> ► |) — | Ignition: OFF CFI control module (N3) and Hall-effect sensor multipoint connector (X53/5) unplugged. | < 1 Ω | Wiring, Hall-effect speed sensor (B6). | ¹⁾ On-off ratio 60% when measured with on-off ratio tester. | \Rightarrow | | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|----------|--|--|---|---------------|---| | [18.1] | | Model 129 | 29 — 3 (A2) | Ignition: OFF CFI control module (N3) and connector A2 of multi- function connector block (X30/1) (Figure 31) unplugged. | < 1 Ω | Wiring,
Check X30/1 (Figure 31). | | 18.2 | | Wiring
Model 129 | 3 - (| Ignition: OFF Connector (1) of A1p8 unplugged. | < 1 Ω | Wiring,
Check A1p8, see DM, body and
accessories, Vol. 1 – 1.2. | | 19.0 | 271) | Data line CFI control module (N3) ↔ DI control module (N1/3) | | Ignition: OFF Connector (A) of N1/3 unplugged (Figure 7). | < 1 Ω | Wiring, Check for correct part no. matching of control modules N3 and N1/3. | | 20.0 | 13
31 | IAT sensor (B17/2) Malfunction circuit | N3
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ | Ignition: ON | See Table I | Wiring, Engine 104: (Figure 1), Engine 119: (Figure 2), B17/2, N3. | On-off ratio 80% when measured with on-off ratio tester. | \Rightarrow | ** | Test scope | Test con | nection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|-----|--|-----------------------------------|--|------|--|--------------------------------------|--| | 20.1 | | Resistance | 2 | B17/2
√ ᡚ ⁺ ► | | Ignition: OFF Connector of B17/2 unplugged. | See Table I | B17/2. | | 20.2 | | Wiring | N3
5— (
14— (| ← <u></u> Ω <u>+</u>
← <u>Ω</u> + | | Ignition: OFF CFI control module (N3) and B17/2 unplugged. | < 1 Ω | Wiring. | | 21.0 | 51) | O2S 1 (beforeTWC) (G3/2) Malfunction circuit | 19 (| N3
 | | Engine: at Idle and at operating temperature. | Oscillates
between
0.1 – 0.9 V | Wiring, G3/2, N3, ⇒ 35.0 Check mixture adjustment. | | 21.1 | 17 | Insulation,
O2S 1 wire | 32 ш | N3
 | 5 13 | Ignition: OFF N3 connector and O2S 1 signal connector (G3/2x2) orO2S 1 connector (G3/2x1) unplugged. Model 124: (Figure 13) Model 129: (Figure 14). | ∞ Ω | Wiring. | On-off ratio 50% when measured with on-off ratio tester. | \Rightarrow | ** | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|---------------------------------------|--|---|---|---| | 21.2 | П | O2S 1 wire ¹⁾
Model 124 | N3
G3/2x2
13 — — — | Ignition: OFF CFI control module (N3) and O2S 1 signal connector (G3/2x2) unplugged. | < 1 Ω | Wiring, | | | | Model 129 | | Ignition: OFF CFI control module (N3) and O2S 1 connector (G3/2x1) unplugged. | < 1 Ω | Wiring. | | 21.3 | | O2S 1 (before TWC) (G3/2) | N3
13 () 2 V | On-off ratio tester connected. Engine: at Idle Connector G3/2x1 connected. | 0 – 10% at on-
off ratio tester
after 30
seconds. | G3/2. | | 21.4 | | CFI control module (N3) | N3 | On-off ratio tester connected. Engine: at Idle Connector G3/2x1 unplugged. | 90 – 100% at
on-off ratio tester
after 30
seconds. | N3. | | 22.0 | | O2S 1 heater
Voltage supply | N16
□□□□□□
4 — • • • • • • • • • • • • • • • • • • | Engine: at Idle | 11 – 14 V | Wiring,
N3,
Engine systems control
module (N16). | ¹⁾ Drive vehicle onto lift. | \Rightarrow | | Test scope | Test conr | nection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|--------------------------------|------------------------|------------------------|---------------|--|---------------|------------------------------------| | 22.1 | | Control signal
O2S 1 heater | 4 —• | N16
 |) — 18 | Engine: at Idle | 11 – 14 V | Wiring, CFI control module (N3). | | 22.2 | | Wiring | N3
3 — C | <u>~</u> ¯@ <u>+</u> ► |) — 18 | Ignition: OFF N3 and engine systems control module (N16) unplugged. | < 1 Ω | Wiring. | | 22.3 | 22 | Control signal
O2S 1 heater | 20 — | N16 |) —1 | Ignition: OFF N16 unplugged. O2S 1 connector (G3/2x1) connected. Model 124: (Figure 13) Model 129: (Figure 14). | 0.5 – 1.7 A | Wiring, O2S 1 (before TWC) (G3/2). | | 22.4 | | Model 124
Wiring | G3/2x1
2 — (| <u>~</u> -@+► | | Ignition: OFF
N16 and G3/2x1 unplugged. | < 1 Ω | Wiring. | | \Rightarrow | ** | Test scope | Test con | nection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|---|------------------------|---------------|----------------------|--|---------------|--| | [22.4] | | Model 129 Wiring 1) | G3/2x1
2 — | <u>→</u> | N16
 | N16 and G3/2x1 unplugged. | < 1 Ω | Wiring. | | 22.5 | | Model 124
Wiring | G3/2x1
1 — (| <u>→</u> | | Ignition: OFF O2S 1 heater coil connector (G3/2x1) unplugged. | < 1 Ω | Wiring, | | | | Model 129
Wiring ¹⁾ | G3/2x1
1 — (| <u>√</u> | W16 | Ignition: OFF
Connector G3/2x1
unplugged. | < 1 Ω | Wiring. | | 23.0 | | Adjustable camshaft timing
solenoid (Y49) and
mechanical camshaft
adjustment
Engine 104 | N3
1
N3
6 | -()- | Y49
2
Y49
1 | | Engine shakes | Y49,
Check mechanical camshaft
adjustment (see SMS, Repair
Instructions, Engine 104, Group
05, Job No. 217). | ¹⁾ Drive vehicle onto lift. | \Rightarrow |
Test scope | Test connection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|--|---|-------------|--|----------------------------|--| | 24.0 | Engine 104 Camshaft adjustment (electrical) (Y49) | Y49
1 — (|) —2 | Ignition: OFF Connect test cable 102 589 04 63 00 to adjustable camshaft timing solenoid (Y49). Engine: Start Increase engine speed to approx. 2000 rpm. | Briefly 1.5 A,
then 1 A | Wiring,
Y49,
CFI control module (N3). | | 25.0 | Engine 119 Left adjustable camshaft timing solenoid (Y49/1) and left mechanical camshaft timing adjustment | N3 1 | | Ignition: OFF Connector on Y49/1 unplugged. Engine: at Idle Arrivation of 10 seconds. | Engine shakes | Y49/1,
Check mechanical camshaft
adjustment (see SMS, Repair
Instructions, Engine 119, Group
05, Job No. 217). | | 26.0 | Engine 119 Left camshaft adjustment (electrical) (Y49/1) | Y49/1
1 — (— — — — — — — — — — — — — — — — — — — |) —2 | Ignition: OFF Connect test cable 102 589 04 63 00 to adjustable camshaft timing solenoid (Y49/1). Engine: Start Increase engine speed to approx. 3000 rpm. | Briefly 1.5 A,
then 1 A | Wiring,
Y49/1,
Chech contacts at engine
separation point connector
(X26/2),
CFI control module (N3). | | \Rightarrow |
Test scope | Test connection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|--|--|-----------------------|--|-----------------------------------|---| | 26.1 | Left camshaft adjustment
Control | N3
 | | | Briefly 7.5 V
then approx. 5 V | If nominal value is greater than 11 V, check CFI control module (N3) wiring for open circuit, ⇒ 26.2. | | 26.2 | Left adjustable camshaft timing solenoid (Y49/1) | Y49/1
1 _ _ | 2 | Ignition: OFF Connector on Y49/1 unplugged. | 5 ± 1 Ω | Y49/1. | | 26.3 | Wiring | N3
41 — (→ □ ① + → ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← | Y49/1
) — 2 | Ignition: OFF CFI control module (N3) and connector on Y49/1 unplugged. | < 1 Ω | Wiring | | \Rightarrow |
Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|---|--|--|-----------------------------------|--| | 27.0 | Engine 119 Right adjustable camshaft timing solenoid (Y49/2) and right mechanical camshaft adjustment | 1 () 2 N3 Y49/2 | Ignition: OFF Connector on Y49/2 unplugged. Engine: at Idle A Bridge for a max. of 10 seconds. | Engine shakes | Y49/2, Check mechanical camshaft adjustment (see SMS, Repair Instructions, Engine 119, Group 05, Job No. 217). | | 28.0 | Right camshaft adjustment (electrical) (Y49/2) | Y49/2
1 — (→ - (((((((((((((((((| Ignition: OFF Connect test cable 102 589 04 63 00 to adjustable camshaft timing solenoid (Y49/2). Engine: Start Increase engine speed to approx. 3000 rpm. | Briefly 1.5 A,
then 1 A | Wiring,
Y49/2,
CFI control module (N3). | | 28.1 | Right camshaft adjustment
Control | N3
 | Increase engine speed to approx. 3000 rpm. | Briefly 7.5 V
then approx. 5 V | Wiring,
Y49/2,
N3. | | 28.2 | Right adjustable camshaft timing solenoid (Y49/2) | Y49/2
1 = 2 | Ignition: OFF Connector on Y49/2 unplugged. | 5 ± 1 Ω | Y49/2. | | \Rightarrow | ** | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|----------------------------------|---|---|---------------|--| | 28.3 | | Wiring | Y49/2
41 — • • • • • • • • • • • • • • • • • • | Ignition: OFF CFI control module (N3) and connector on Y49/2 unplugged. | < 1 Ω | Wiring. | | 29.0 | | A/C compressor engagement signal | 6 — — — — — — — — 45 | Engine: at Idle Switch ON automatic climate control (A/C compressor). | 5 – 10 V | Wiring, Engine systems control module (N16), Check A/C compressor cut-out (see DM, Climate Control, Vol. 1). | | 29.1 | | Wiring | 9 - - - - - - - - - | Ignition: OFF N3 and A/C compressor control module (N6) unplugged. | < 1 Ω | Wiring. | | \Rightarrow | | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|---|------------------------------|---|---|--| | 30.0 | 11 | Electromagnetic AIR pump clutch (Y33) Control | N16
 | Ignition: OFF ECT sensor (B11/2) unplugged. Using two resistance substitution units, simulate 2.5 kΩ resistance (+ 20°C) at sockets 2 and 4 as well as at sockets 1 and 3 (Figure 12). Engine: at Idle Disconnect air hose to check valve. | 11 – 14 V
(for approx. 2
minutes after
start) Noticeable air
flow at air hose. | ⇒ 30.1,
Engine systems control
module (N16). | | 30.1 | | Secondary air injection control signal | N16
17 — (→ - () → - 21 | Ignition: OFF ECT sensor (B11/2) unplugged. Simulate 2.5 kΩ resistance (+ 20°C) at sockets 2 and 4 as well as at sockets 1 and 3 (Figure 12). Engine: at Idle | 11 – 14 V
(for approx. 2
minutes after
start) | Wiring, CFI control module (N3). | | 30.2 | | Wiring | N3 N16
142 | Ignition: OFF
N3 and N16 unplugged. | < 1 Ω | Wiring. | | \Rightarrow |
Test scope | Test conne | ction | | Test condition | Nominal value | Possible cause/Remedy | |---------------|---|------------|-------------------------------------|-------------|--|--|--| | 30.3 | AIR pump switchover valve (Y32) Control | 1—(| Y32
• - (<u>Ŷ</u> +► |) —2 | unplugged. Simulate 2.5 k Ω | 11 – 14 V
(for approx. 2
minutes after
start) | Wiring to Y32 (located in engine compartment): Model 124: (Figure 5), Model 129: (Figure 6). | | 30.4 | AIR pump switchover valve (Y32) | 1 | Y32
-¯Ω [±] - | 2 | Ignition: OFF Connector on Y32 unplugged. | 25 ± 5 Ω | Y32. | | 30.5 | Electromagnetic AIR pump clutch (Y33) Control | 1—(| Y33
-¯Ŷ±- |) —2 | unplugged. Simulate 2.5 k Ω | 11 – 14 V
(for approx. 2
minutes after
start) | Wiring to Y33 (located in harness channel in front of right spring tower). | | 30.6 | Electromagnetic AIR pump clutch (Y33) | 1 | Y33
- -' <u></u> | | Connector on Y32 unplugged. | 5 ± 1 Ω | Y33. | | \Rightarrow | | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|--------------------------------|--------------------------------------|--|---------------------|--| | 31.0 | 25 | Start valve (Y8) Control | N3
 | Ignition: OFF ECT sensor (B11/2) unplugged. Using two resistance substitution units, simulate 2.5 kΩ resistance (+ 20°C) at sockets 2 and 4 as well as at sockets 1 and 3 (Figure 12). Engine: at Idle | Briefly
10 ± 2 V | CFI control module (N3), see "Testing Starting System" (33), ⇒ 32.0. | | 32.0 | | Start valve (Y8)
Resistance | Y8
1 _ — | Ignition: OFF Connector on Y8 unplugged. | 10 – 15 Ω | Y8. | | 32.1 | | Wiring | N3 20 — ← — ① → — 1 41 — ← — ① → — 2 | Ignition: OFF | < 1 Ω | Wiring, Intermittent contact (X26/2). | | \Rightarrow | | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|------------------------------|---|---------------------------------------|--|--| | 33.0 | 18 | ISC valve (Y6) Current check | 1—(——————————————————————————————————— | Connect test cable to Y6. | Engine 104
600 ± 50 mA
Engine 119
700 – 1000 mA | Wiring, Intermittent contact (X26/2), CFI control module (N3). | | 33.1 | | Resistance | Y6
1 _ _ | | Engine 104 7.5 – 10 Ω Engine 119 3.5 – 5.5 Ω | Y6,
Intermittent contact (X26/2). | | 33.2 | | Wiring | | Ignition: OFF
N3 unplugged. | < 1 Ω | Wiring, Intermittent contact (X26/2). | | \Rightarrow | ** | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|--|--|---|---------------------------------------|---| | 34.0 | | Charcoal canister purging Operation | | Note to Test connection: Connect vacuum tester to side connection (B) of purge valve (53): Model 124: (Figure 8), Model 129: (Figure 9, | Vacuum increases with increasing rpm. | Wiring, CFI control module (N3), Purge control valve (Y58/1), Check vacuum lines, ⇒ 13.0, Intermittent contact (X26/2). | | | | | | Ignition: OFF Purge line (B, Figures 8, 9 or 11) disconnected from charcoal canister at purge valve. Engine: at Idle and at operating temperature. Slowly increase engine speed to a maximum of 3000 rpm. | | | | 34.1 | 23 | Purge control valve (Y58/1)
Control | N3
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ | Engine: at Idle Increase engine speed to > 800 rpm | 11 – 14 V | Wiring,
N3,
Y58/1,
Intermittent contact (X26/2). | | 34.2 | | Purge control valve (Y58/1) | Y58/1
1 - Q) [±] 2 | Ignition: OFF Connector on Y58/1 (Figures 8, 10) unplugged. | 25 ± 5 Ω | Y58/1. | | \Rightarrow |
Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|---|--|---|-------------------------|---------------------------------------| | 34.3 | Wiring | 2 — (→ □ Ω + →) — | Ignition: OFF 8/1 N3 unplugged 1 - 2 | < 1 Ω | Wiring, Intermittent contact (X26/2). | | 35.0 | Non-USA vehicles. Continue to next test step. | | | | | | 36.0 1) | Circuit 50 Activation | N3
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ | Plug 2 on DI control module (N1/3) disconnected (Figure 7). Engine: Start | 10 ± 2 V while cranking | Wiring (circuit 50). | On-off ratio 70% when measured with on-off ratio tester. | \Rightarrow |
Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|--|-----------------|--|--|---| | 37.0 | Deceleration shut-off
Engine 104 | | Note to Test connection: Connect to diagnostic socket (X11). Engine: Start Increase engine speed to 2000 – 2500 rpm, then close throttle valve. | On-off ratio
momentarily
jumps up to
95%. | Wiring, Check adjustment of linkage and throttle valve switch, S27/2. | | 37.1 | Deceleration shut-off
microswitch (S27/2) | N3 | Ignition: OFF CFI control module (N3) unplugged. Accelerator pedal in CTP. Depress accelerator pedal. | < 1 Ω
∞ Ω | Open circuit, S27/2. Short circuit, S27/2. | | 37.2 | Vehicles with ASR
Idle speed switching signal | N3 | Ignition: ON Accelerator pedal in CTP. Depress accelerator pedal. | 11 – 14 V
< 1 V | ACCelerator pedal position sensor,
Check EA/CC/ISC control module
(N4/1), see DM, Engines,
Vol. 2 – 6.1. | | \Rightarrow |
Test scope | Test connection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|---|---|-------------|---|--|--| | 37.3 | Electrohydraulic actuator (Y1)
Current check | Y1
1 -∢ - <u>♣</u> • <u>♣</u> • <u>♣</u> • <u>♣</u> | | Ignition: OFF Connect test cable 102 589 04 63 00 to electrohydraulic actuator. Engine: Start Increase engine speed to 2000 – 2500 rpm and close throttle valve. | Momentarily
approx. – 60 mA
until combustion
resumes. | \Rightarrow 1.0 – 3.0 and \Rightarrow 10.0, N3. | | 38.0 | Engine 104 Kickdown cut-out Malfunction circuit Engine 119 | N16
 |) —1 | Ignition: OFF Engine systems control module (N16) unplugged. Kickdown switch (S16/6) activated. | Engine 104:
450 ± 50 mA ¹⁾
850 ± 50 mA ¹⁾
Engine 119: | Wiring,
S16/6,
AT kickdown valve (Y3, Figure 4). | | | Kickdown cut-out Malfunction circuit | | | | 450 ± 50 mA ¹⁾
250 ± 50 mA ¹⁾ | | | 38.1 | Kickdown switch (S16/6)
Voltage supply | N16
 |) —1 | Ignition: OFF N16 unplugged. Ignition: ON Accelerator pedal in CTP. Accelerator pedal in kickdown position. | < 1 V
11 – 14 V | s16/6, AT kickdown valve (Y3, Figure 4). Wiring, ⇒ 38.2. | ¹⁾ Nominal value may ary from one nanufacturer to annother. | \Rightarrow | Test scope | Test connection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|---|----------------------|-------------|---|---|-----------------------| | 38.2 | Kickdown switch (S16/6) Resistance | \$16/6
2 — | _ _4 | activated. | < 1 Ω
∞ Ω | S16/6. | | | | | | not activated. | ~ 32 | | | 38.3 | AT kickdown valve (Y3) or kickdown solenoid valve (Y3/1y1) 2) | W11 → ① → | Y3/1y1 | Ignition: OFF Connector Y3 unplugged or, with 5-speed AT, valve block connector (Y3/1x1) disconnected. | 12± 3 Ω 1)
28 ± 5 Ω 1) | Y3 or Y3/1y1. | ¹⁾ Nominal value may ary from one nanufacturer to annother. ²⁾ Kickdown solenoid valve (Y3/1y1) in 5-speed AT 722.5 only. | \Rightarrow | | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|--|---|---|-----------------------------|--| | 39.0 | | EGR valve (static test) | | Note to Test connection: Connect vacuum tester to EGR valve. Apply 500 mbar vacuum. Disconnect vacuum line on EGR valve. | EGR valve
closes audibly | EGR valve. | | 39.1 | | EGR valve (dynamic test) | | Note to Test connection: Vacuum tester connected to EGR valve. Engine: at Idle Engine rpm > 1000 rpm | > 400 mbar | Vacuum lines, Vacuum supply, EGR switchover valve (Y27), Model 124: (Figure 5), Model 129: (Figure 6), Throttle valve housing. | | 40.0 | 16 | EGR switchover
valve (Y27)
Control | N3
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ | Engine: at Idle Engine rpm > 3000 rpm | Approx. 12 V | Wiring, CFI control module (N3). | | 40.1 | | EGR switchover valve (Y27) | Y27
- - ⊕ • • • • • • • • • • • • • • • • • • | Ignition: OFF | 30 ± 5 Ω | Y27: Model 124: (Figure 5), Model 129: (Figure 6). | | 40.2 | | Wiring | N3
38 — (→ ② →) — 1
41 — (→ □ ② →) — 2 | Ignition: OFF
N3 and Y27 unplugged. | < 1 Ω | Wiring. | | \Rightarrow |
Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|--|-----------------|----------------|---------------|-----------------------| | 41.0 | Non-USA vehicles.
Continue to next test step. | | | | | | 42.0 | Non-USA vehicles.
Continue to next test step. | | | | | | 43.0 | Non-USA vehicles.
Continue to next test step. | | | | | | \Rightarrow | Test scope | Test connection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|--|---|-------------|--|--|--| | 44.0 | Transmission upshift delay
relay module (K29)
Solenoid valve (Y3/2)
Control | W11
⊥ - <u></u> <u></u> <u></u> <u></u> | > | Ignition: OFF ECT sensor (B11/2) unplugged. Using two resistance substitution units, simulate 2.5 k Ω resistance (+ 20°C) at sockets 2 and 4 as well as at sockets 1 and 3 (Figure 12). Engine: at Idle | 11 – 14 V
Engine 104:
max. 80 sec.
Engine 119:
max. 120 sec. | ⇒ 44.1,
⇒ 44.2,
⇒ 44.3,
⇒ 44.4,
CFI control module (N3),
K29. | | 44.1 | Transmission upshift delay relay module (K29) Voltage supply | W11 ⊥ W11 ⊥ ———————————————————————— |) —3 | Ignition: OFF K29 unplugged: Model 124: (Figure 16), Model 129: (Figure 17). Ignition: ON | 11 – 14 V
11 – 14 V | Overvoltage protection relay (K1/1), Wiring. | | \Rightarrow | 8 0 | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|-----|---|-----------------|---|---------------|-----------------------| | 44.2 | | Wiring to solenoid valve (Y3/2) | W11 Y3/2x1 | Ignition: OFF Transmission upshift delay relay (K29) unplugged: Model 124: Figure 16 Model 129: Figure 17 Solenoid valve connector (Y3/2x1) unplugged. Ignition: ON | 11 – 14 V | Open circuit. | | 44.3 | | Solenoid valve (Y3/2) | - O + | Ignition: OFF Solenoid valve connector (Y3/2x1) unplugged. | 10 – 18 Ω | Y3/2. | | 44.4 | | Wiring from CFI control
module (N3) to transmission
upshift delay relay
module (K29) | | Ignition: OFF Socket box connected to N3. K29 unplugged. | < 1 Ω | Open circuit. | | \Rightarrow | ** | Test scope | Test connection | Test condition | Nominal value | Possible cause/Remedy | |---------------|----|--|-----------------|---|---|---| | ⇒
45.0 | | Transmission upshift delay switchover valve (Y3/3) Operation | | Test condition Note to Test connection: Disconnect vacuum line (Figure 38) on Y3/3. Connect vacuum tester with Y-distributor to Y3/3. Ignition: OFF ECT sensor (B11/2) unplugged. Using two resistance substitution units, simulate 2.5 k Ω resistance (+ 20oC) at sockets 2 and 4 as well as at sockets 1 and 3 | Nominal value > 400 mbar (for a maximum of 80 seconds) | Possible cause/Remedy Control of Y3/3, Short/open circuit, Y3/3 defective, Vacuum element for transmission upshift delay, Vacuum line. | | | | | | (Figure 12).
Engine: at Idle | | | | \Rightarrow |
Test scope | Test con | nection | | Test condition | Nominal value | Possible cause/Remedy | |---------------|-----------------|----------------------------------|----------|-------------|--|---|---| | 45.1 | Control | W11
⊥
Y3/3
1 — ఁ | (Y)+- |) —2 | Ignition: OFF Connector of Y3/3 (Figure 38) unplugged. Using two resistance substitution units, simulate 2.5 k Ω resistance (+ 20oC) at sockets 2 and 4 as well as at sockets 1 and 3 (Figure 12). | 11 – 14 V | Overvoltage protection relay module (K1/1), Short/open circuit. | | | | | | | Engine: Start | 11 – 14 V (for a maximum of 80 seconds) | Short/open circuit, CFI control module (N3). | | 45.2 | Coil resistance | Y3/3
1 _ _ | <u>→</u> | 2 | Ignition: OFF Connector of Y3/3 (Figure 38) unplugged. | 25 – 40 Ω | Y3/3 defective. | | Temperature (°C) | Resistance (Ω) | Voltage (V) at IAT sensor (B17/2) | Voltage (V) at ECT sensor (B11/2) | |------------------|----------------|-----------------------------------|-----------------------------------| | - 20 | 15700 | 2.85 – 3.49 | 5.12 – 5.60 | | -10 | 10000 | 2.50 – 3.06 | 4.49 – 5.11 | | 0 | 5900 | 2.10 – 2.56 | 4.12 – 4.48 | | 10 | 3700 | 1.69 – 2.07 | 3.77 – 4.11 | | 20 | 2500 | 1.32 – 1.62 | 3.36 – 3.76 | | 30 | 1700 | 1.03 – 1.25 | 2.92 – 3.35 | | 40 | 1170 | 0.77 – 0.94 | 2.51 – 2.91 | | 50 | 830 | 0.57 – 0.69 | 2.09 – 2.50 | | 60 | 600 | 0.42 - 0.52 | 1.69 – 2.08 | | 70 | 435 | 0.32 - 0.40 | 1.36 – 1.68 | | 80 | 325 | 0.25 - 0.31 | 1.09 – 1.35 | | 90 | 245 | 0.18 - 0.22 | 0.88 – 1.08 | | 100 | 185 | 0.14 – 0.17 | 0.75 – 0.87 | B17/2 P07-2361-13 P15-0171-13 Figure 1 Engine 104 B17/2 IAT sensor Figure 2 Engine 119 B17/2 IAT sensor Figure 3 B11/2 ECT sensor (4-pole) **(19)** P07-2363-13 P07-2070-13 Figure 4 Y3 Kickdown valve (AT) Figure 5 Model 124 Y27 EGR switchover valve Y32 AIR pump switchover valve Figure 6 Model 129 P07-2363-13 Y27 EGR switchover valve Y32 AIR pump switchover valve P47-2040-13 53 B C P47-2011-13 P47-2011-13 Figure 7 DI control module | 1 | Knock sensor | | | |---|--------------|--|--| | _ | 01/5 | | | 2 CKP sensor (L5)3 Reference resistor 4 Vacuum connection A 8-pole plug connection B 8-pole plug connection Figure 8 Engine 104, Model 124 53 Purge valve Y58/1 Purge control valve A Purge line (to throttle valve) B Purge line (to charcoal canister) C Purge control valve vacuum line Figure 9 Engine 104, Model 129 53 Purge valve Y58/1 Follow vacuum line "C" for location P47-2012-13)) V / © P47-2011-13 U07-2022-13 Figure 10 Engine 119, Model 129 Purge control valve Y58/1 Figure 11 Engine 119, Model 129 53 Purge valveA Purge line (to throttle valve) В Purge line (to charcoal canister) Purge control valve vacuum line С Figure 12 Model 124 ECT sensor (4-pole), terminal layout G3/2x1 P14-2011-13 Figure 13 Model 124 G3/2x2 O2S 1 signal connector Figure 14 Model 129 G3/2x1 O2S 1 connector (before TWC) Figure 15 Model 129 1 O2S 2 signal2 O2S 1 heater G3/2x1 O2S 1 connector (before TWC) P15-2105-13A Figure 16 Model 124 K29 Transmission upshift delay relay module P54-0056-56 Figure 17 Model 129 K29 Transmission upshift delay relay module (location E) P07-2362-13 P54-2121-13B Figure 18 Engine 104 S29/2x1 WOT/CTP switch connector Figure 19 Engine 119 S29/2x1 WOT/CTP switch connector Figure 20 Model 124 W10 Ground (battery) N2/1 P83-2270-13 P83-2270-13 Figure 21 Ground (engine - connection point for ground wires) W11 Figure 22 Model 124 W12 Ground (center console) Figure 23 Model 129 W16 Ground (component compartment) P54-2121-13B P07-2021-13 Figure 24 Model 129 W17 Ground (right rear storage area) Figure 25 Model 124 X4/10 Terminal block (circuit 30/30Ü/61e/87L) (6-pole) Figure 26 Model 129 X4/10 Terminal block (circuit 30/30Ü/61e/87L) (6-pole) X11/4 P07-2033-13 Figure 27 Model 124 X11/4 Data link connector (DTC readout) Figure 28 Model 129 X11/4 Data link connector (DTC readout) Figure 29 Model 129 P07-2033-13 X22/2 AT/engine connector (8-pole) P54-2059-13A P07-2020-13 X36 P54-2255-13 P54-2255-13 Figure 30 Model 124 X26 Interior/engine connector (12-pole) Figure 31 Model 129 X30/1 Multi-function connector block Figure 32 Model 124 X36 FP harness connector (1-pole) X363 P54-2008-13A Figure 33 Model 129 X36 FP harness connector (1-pole) Figure 34 Model 124 X36/3 FP harness connector (2-pole) Figure 35 Model 129 X36/3 FP harness connector (2-pole) P54-2271-13 P07-2035-13 P07-5177-13 Figure 36 Model 124 X89/2 EA control module/engine harness connector (3-pole) Figure 37 Model 129, Engine 104 X89/4 EA control module/CFI connector (1-pole) Figure 38 Model 124 (model 129 location similar) Y3/3 Upshift delay switchover valve