9.6 Engine 120

Diagnosis	Page
Diagnostic Trouble Code (DTC) Memory	11/1
Complaint Related Diagnostic Chart	12/1
Trouble Code Description	13/1

Electrical Test Program

Component Locations	21/1
Preparation for Test	22/1
Sequential Multiport Fuel Injection System Test	23/1
Ignition System Test	24/1
EA System Test	25/1
CC System Test	26/1

Hydraulic Test Program

Fuel System Pressure and Internal Leakage Test				
Preparation for Test	31/1			
Test	32/1			

Fuel Pump TestPagePreparation for Test33/1Test34/1

Injector Test

Preparation for Test	35/1
Test	36/1

Contents

Diagnosis - Diagnostic Trouble Code (DTC) Memory

Preliminary work: Engine Test, Adjustment, Engines (SMS, Job No. 07-1100)

Risk of severe injury when touching ignition parts which produce high voltages. Do not touch igntion components. Persons with heart pacemakers are not to perform repairs on this type of ignition system.

Electronic ignition systems produce dangerous high voltages on both the primary circuit and the secondary (ignition) circuits. Due to the high voltages produced, contact with any of the voltage carrying components can be dangerous to your health (burns, heart palpatations, cardiac arrest etc).

- Igntion must be turned OFF prior to performing any repair work on the igntion system.
- Do not come in contact or remove with any of the ignition components while the engine is cranking or idling.
- Wear rubber soled shoes.
- Disconnect connectors for CKP sensor at sensor or control module.
- If repairs require that the ignition be turned on, then dangerous voltages will be present through out the entire ignition system.
- No exposed metal connectors or sending units may be installed in the ignition wires.

Risk of fatal injury from being pulled into rotating vehicle parts. Do not reach into rotating parts.

Wear closed and tight-fitting work clothes.

Protect vicinity of rotating vehicle components from unauthorized access.

Risk of explosion from fuel igniting, risk of poisoning from inhaling and swallowing fuel as well as risk of injury to eyes and skin from contact with fuel.

No fire, sparks, exposed flames or smoking.

Pour fuels only into suitable and appropriately marked containers.

Wear protective clothing when handling fuel.

Possible hazards

Risk of explosion, poisoning and injury

Fuels are highly inflammable and toxic if inhaled. Fuel may cause skin damage. Contact with gasoline fuel, for example, removes the natural oils on the skin. Fuel vapors are explosive, invisible and spread out at floor level. They are toxic if inhaled and have a narcotic effect in high concentrations.

Protective measures/guidelines

- Pay attention to national safety regulations and provisions.
- No fire, sparks, exposed flames or smoking.
- Ensure that the place of work is adequately ventilated.
- Never drain or pour in fuels over assembly pits.
- Store drained fuel in suitable and sealed containers.
- Immediately eliminate any fuel spills which have been spilled out of the container.

Continued on next page:

Diagnosis - Diagnostic Trouble Code (DTC) Memory

Conducting work on a vehicle with exposed flame

(e.g. welding etc.)

- Prior to commencing such work, remove appropriate parts of the fuel system and seal open fuel lines with plugs.

First-aid measures

- Clean contaminated/exposed skin with water and soap.
- Change contaminated clothing as quickly as possible.
- If fuel gets into the eyes, rinse out eyes immediately with water, and contact a doctor, if necessary.

To Avoid Damage to the Ignition System

- To avoid damage to the engine control module, connect/disconnect the control module connectors only with the ignition: **OFF**.
- Circuit 1 of the ignition coil may not be shorted to ground, e.g. theft deterence.
- Only original equipment should be installed in the ignition system.
- Do not operate the ignition system at cranking speed unless the entire igntion harness is connected.
- Do not perform any tests (grounding of ignition cable 4 disconnecting a spark plug connector or pulling cable 4 out of the ignition coil) at cranking or idle speed.

- The high output side of the ignition system must carry at least 2 k Ω of load (spark plug connector).
- If assisting a disabled vehicle and it becomes necessary to perform an igntion spark test, perform this test only on one ignition/sark plug.
 Ensure a good ground connection to the spark plug.
- ME SFI: the ignition system is to be turned OFF, when cranking engine to perform compression tests, additionally, it is necessary to disconnect connector 2 from the control module.

i Engine 120 has separate ignition and fuel injection system.

\wedge

Readout via the impulse counter scan tool is not possible.

Note:

Symbol for emission related malfunctions which lead to the activation of the CHECK ENGINE MIL when a certain test cycle was performed and a fault was recognized.

Diagnosis - Diagnostic Trouble Code (DTC) Memory

Note regarding diagnostic trouble code (DTC) readout:

The left (N3/11) and right engine control module (N3/12) for the ME-SFI system is equipped with diagnostic trouble code (DTC) memory. All DTC's are readable via the right control module (N3/12) only. Malfunctions are recognized and stored as DTC's and are distinguished as follows:

- Malfunctions which are constantly present,
- Intermittent contact malfunctions which have occured during a trip and have been stored.

The DTC memory remains active when the vehicle's battery is disconnected.

Malfunctions which are no longer present, are automatically erased as follows:

- After three trips the "CHECK ENGINE" MIL goes out.
- After an additional 40 warm-up periods the DTC is automatically erased.

A warm-up period or trip is defined as follows:

Warm-up period

- Engine coolant temperature at start < 35° C,
- Engine coolant temperature increases to > 80° C.

Trip

- Engine running for > 20 minutes,
- Engine temperature > 7° C,
- Engine speed > 500 rpm,
- All emission related logic chain functions already were checked during previous trips.

The stored DTC's can be read at the data link connector (X11/4) using the HHT only, with the ignition switched "**ON**" or with the "engine running".

Readout via an on-off ratio readout or impulse counter scan tool has been eliminated.

Note regarding mixture preparation self-adaptation:

The Lambda control system determines the fuel injection duration so precisely that the fuel/air ratio is kept constant at Lambda level 1 (equals 14.7 kg air to 1 kg fuel) under all operating conditions. Should malfunctions occur in the form of:

- Intake air leaks,
- Injector wear or carbon build-up,
- Engine wear,
- Transition resistance in MAF sensor,
- Defective diaphragm pressure regulator,
- Defective purge control valve,

the engine control module automatically performs a mixture adjustment.

Diagnosis - Diagnostic Trouble Code (DTC) Memory

The degree of correction is constantly calculated and permanently stored. The self-adaptation is performed additive at idle and multiplicative under partial load. The correction towards rich or lean is \pm 1.0 ms (injection duration)and at partial load the factor 0.77 – 1.28. After repair work is performed, the engine control module will automatically adapt itself again .

Note regarding version coding:

The engine control module is equipped with a version coding feature. The coding must be performed with the Hand-Held Tester (automatically or manually, see Notes for HHT "Version coding" 11/5) upon installation of a new control module.

The following vehicle version data must be determined for coding:

- Vehicle model,
- Catalytic converter (TWC),
- Non-catalytic converter (non-TWC),
- Country version.

Note regarding drive authorization system (DAS) stage 2 and (DAS) X: Vehicles with ME-SFI are equipped with the drive authorization system

(DAS) stage 2.

The activation/deactivation of the drive authorization system takes place from the RCL control module (stage 2) or from the DAS control module (stage X) via CAN data bus to the engine control module (ME-SFI). After activating the drive authorization system, the engine control module renders the fuel injection system inoperative. On vehicles till 05/96 a drive authorization system stage 2 (DAS 2) is installed. This drive authorization system can only be activated/deactivated with the IR transmitter or the master key.

On vehicles as of 06/96 a drive authorization system stage X (DAS X) is installed. The activation or deactivation is accomplished with transponder technology via the ignition key. As soon as the ignition key is turned in the steering lock the DAS control module receives a signal and the fuel injection system is made operative via the CAN data bus.

The engine control module and the RCL or the DAS control module are "married" to one another through identification codes. The identification codes can not be erased (see HHT nominal values "DAS", menu selection 3/7).

Therefore, swapping the engine and RCL or DAS control modules from one vehicle to another is not possible!

\wedge

If an exchange engine control module is installed for test purposes, only 40 start attempts can be perfromed before the engine and RCL or DAS control modules "marry" to one another. Prior to perfroming the first start, the engine control module must be version coded using the HHT. Additionally, the code number and VIN must be entered (see HHT nominal values "DAS", menu selection 3/7).

Diagnosis - Diagnostic Trouble Code (DTC) Memory

Notes regarding automatic recognition of the mechanical end stop and wide open position of the throttle valve from the actuators:

The end stops of the throttle valves are determined by the actuators and stored in the engine control module.

After replacing one or both control modules or actuators, the mechanical end stop and wide open position must be determined and recorded. After interrupting the voltage supply from circuit 30 (B+), the engine control module performs a self adaptation of the actuators with the ignition ON (lower mechanical end stop).

Requirements for learning process:

- Selector lever in position P/N,
- Vehicle at rest,
- Engine off,
- Engine coolant temperature between 5° C and 100° C,
- Accelerator pedal not applied.

When all requirements are met, turn **ignition ON for at least 60 seconds**, then turn **ignition OFF for at least 10 seconds**.

The learned value is stored in memory, only after the first 10 start cycles, provided the voltage supply has not been interrupted. Should the battery be disconnected after the 9th start cycle, the re-learning process must be performed again.

Notes regarding the engine control module after interruption of voltage supply, circuit 30:

If a rough running engine is noticed after a voltage interruption, the following conditions must be met:

- Engine coolant temperature approx. > 80 °C,
- Drive vehicle on dynamometer in selector lever position 4 or on the road in selector lever position 3.
- Increase engine rpm to approx. > 3500 rpm and then coast until engine rpm is approx. < 1200 rpm.
- Repeat procedure at least 3 times.

Notes regarding performance/speedometer test:

Disconnecting the ESP/ASR/ETS/ABS control modules is not allowed. The engine control module and transmission control module rely on these modules to supply the VSS data via the CAN bus.

To disable the brake and engine regulation function of the ESP/ASR/ETS/ABS control modules proceed as follows:

A. Working without HHT

- Ignition: OFF.
- Connect HHT adapter to data link connector (X11/4).
- Bridge sockets 1 and 6.
- Engine: Start (ESP/ASR/ETS/ABS MIL must illuminate!).

B. Working with HHT

- Ignition: OFF.
- Disconnect front axle VSS sensor connector (ESP/ASR/ETS/ABS MIL must illuminate!).

When work is completed, reconnect VSS sensor connector, erase DTC's with HHT!

Diagnosis - Diagnostic Trouble Code (DTC) Memory

Notes regarding activation of CHECK ENGINE MIL (only USA)

With combustion misses (e.g. ignition or fuel mixture) the CHECK ENGINE MIL is activated intermitantly (blinking). Affected are the DTC's PD \exists DD to PD \exists I2.

With all other faults the MIL lights continuously.

Notes regarding CKP sensor (L5) adaption

After the replacement of the ME-SFI control module and for the uneven running engine test, the toothed wheel sensor (CKP sensor) adaption must be performed as follows:

- ECT > 70°C
- Drive vehicle with transmission selector lever in 3rd gear
- Increase engine rpm to> 3500 rpm and then coast until engine rpm attains 1200 rpm.

After the replacement of the CKP sensor (L5), the starter ring gear or the replacement of the engine, the toothed wheel sensor (CKP sensor) adaption must be first reset using the HHT, then perform the driving cycle as indicated above.

Diagnosis - Diagnostic Trouble Code (DTC) Memory

Notes for HHT

Fault search with HHT

Diagnostic trouble code (DTC) memory: Select "Current DTC's". If the actual condition changes, e.g. when wiggling a connector, the change is reported optically and acoustically so that troubleshooting can be performed directly with the HHT.

Loose connections

Loose connections are stored if they occur several times in a certain time period. Therefore, they can appear only as "Stored DTC's" and never as "Current DTC's".

Nominal values

All nominal values relative to the actual values shown on the HHT are listed in the Diagnostic Manual, Engines, Volume 1, section A.

Actual value for engine speed

For engine speed, the HHT display indicates the closed throttle speed (CTP) nominal value calculated by the control module on the left, and the rpm actual value on the right. Both values should differ from each other only slightly. Permissible tolerances are not yet determined.

Version coding with HHT

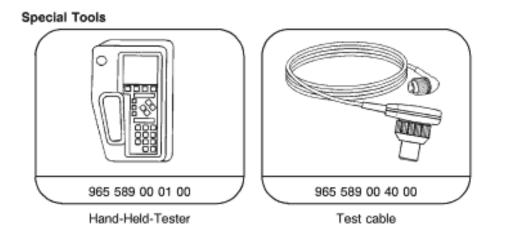
a) Before replacement of the engine control module, the existing code number must be read and stored with the HHT (menu selection 5 "Version coding"). After installation of the new control module, the previously read code number must be entered.

Note:

If returning a new control module to a PDC, the code number must be erased.

b) If the code number can **not** be read, the vehicle equipment/version must be determined, the corresponding code number obtained from the Spare Parts Microfiche (group 54) and manually entered with the HHT.

Drive authorization system (DAS)


Upon replacement the engine control module must be version coded using the HHT. Additionally, the code number and VIN must be entered (see HHT nominal values "DAS", menu selection 3/7).

Correction program

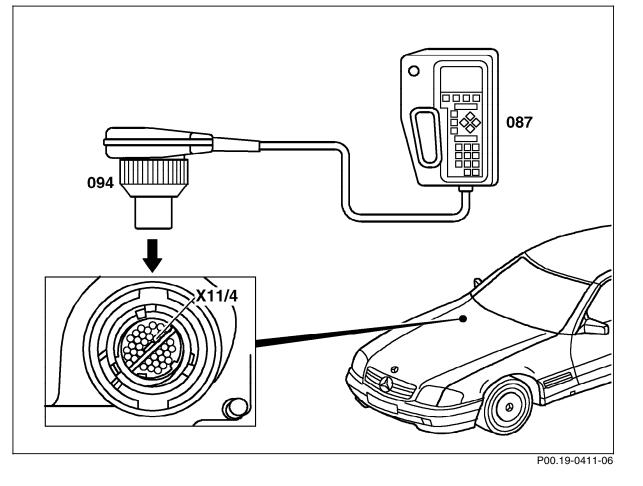
The following corrections can be made with the HHT: (refer to HHT "Correction program" menu item)

- 1. Correction of idle speed in selector lever position P/N.
- 2. Correction of idle speed with selector lever in drive position.
- 3. Make fault setting conditions for uneven running recognition less sensitive.

Diagnosis - Diagnostic Trouble Code (DTC) Memory

Diagnosis - Diagnostic Trouble Code (DTC) Memory

Connection Diagram - Hand-Held Tester (HHT)


- 1 Connect HHT (087) with test cable (097) to data link connector (X11/4)
- 2. Ignition: **ON**
- 3. As per display in HHT:a) read out/erase DTC memoryb) read out actual values
 - c) perform activations
 - d) program control modules
- 4. Disconnect HHT

i

Observe system specific notes, which are described in the beginning of each chapter. Erase all stored faults which come about when tests or simulations are performed, upon completion of the repairs.

Figure 1

087 Hand-Held Tester094 Multiplexer cableX11/4 Data link connector (DTC readout) (38-pole)

Prerequisites for readout of DTC memory

Risk of severe injury when touching ignition parts which produce high voltages. Do not touch igntion components.

Persons with heart pacemakers are not to perform repairs on this type of ignition system.

i

Readout via the impulse counter scan tool is not possible.

Note:

Symbol for emission related malfunctions which lead to the activation of the CHECK ENGINE MIL when a certain test cycle was performed and a fault was recognized in the prior trip cycle. The CHECK ENGINE MIL will illuminate immediately if a "TWC damaging" misfire is found.

Preparation for Test:

- 1. Connect HHT with test cable to data link connector (X11/4), readout DTC fault codes.
- 2. Review 22,
- 3. Review 11, 21, 23, 24, 31, 33,
- 4. Perform Test and adjustment of engine, see DM, Engines, Vol. 1, section B, if necessary.
- 5. Ignition: **ON**

Diagnosis – Diagnostic Trouble Code (DTC) Memory

DTC	Possibl	e cause	DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
_		No malfunction in system		In case of complaint, perform 23, 24, 25 or 26 in its entirety.
P0 100	Mass air flow circuit malfunction, bank 1 (right)	Right hot film MAF sensor (B2/7)	13≫ 1	23⇒4.0
P0 105	MAP circuit malfunction, bank 1 (right)	Right pressure sensor (B28/2)	13 ≥ 2	23⇒ 5.0
P0 110	IAT circuit malfunction, bank 1 (right)	Right IAT sensor (B17/6)	13 ≥ 3	23⇒ 8.0
P0 115	ECT circuit malfunction, bank 1 (right)	Right ECT sensor (B11/10)	13 ≥ 4	23⇒7.0
PO 120	Throttle position sensor circuit malfunction, bank 1 (right)	Right EA/CC/ISC actuator (M16/3) (located on left side of engine)	13 ≥ 5	25⇒ 6.0
PD 130	O2S 1 circuit malfunction, bank 1 (right)	Right O2S 1 (before TWC) (G3/4)	13 ≥ 6	23⇒ 10.0
PD 133	O2S 1 circuit slow response, bank 1 (right)	 A Right O2S 1 (before TWC) (G3/4), ageing correction value exceeded B Right O2S 1 (before TWC) (G3/4), ageing time period too long 	13 ≥ 7	23⇒ 10.0

1) Observe Preparation for Test, see 22.

Diagnosis – Diagnostic Trouble Code (DTC) Memory

DTC	Possible cause			Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
PD 135	O2S 1 heater circuit malfunction, bank 1 (right)	Right O2S 1 heater (before TWC) (G3/4)	13 ≥ 8	23 ⇒ 11.0
PO 136	O2S 2 circuit malfunction, bank 1 (right)	Right O2S 2 (after TWC) (G3/6)	13 ≥ 6	23 ⇒ 12.0
P0 140	O2S 1 heater circuit malfunction, bank 1 (right)	Right O2S 1 heater (before TWC) (G3/4)	13 ≥ 7	23⇒ 10.0
PD 141	O2S 2 heater circuit malfunction, bank 1 (right)	Right O2S 2 heater (after TWC) (G3/6)	13 ≥ 8	23⇒ 13.0
PO 150	O2S 1 circuit malfunction, bank 2 (left)	Left O2S 1 (before TWC) (G3/3)	13 ≥ 6	23⇒ 10.0
P0 153	O2S 1 circuit slow response, bank 2 (left)	 A Left O2S 1 (before TWC) (G3/3), ageing correction value exceeded B Left O2S 1 (before TWC) (G3/3), ageing time period too long 	13 ≥ 7	23⇒ 10.0
P0 155	O2S 1 heater circuit malfunction, bank 2 (left)	Left O2S 1 heater (before TWC) (G3/3)	13 ≥ 8	23⇒ 11.0
PO 156	O2S 2 circuit malfunction, bank 2 (left)	Left O2S 2 (after TWC) (G3/5)	13 ≥ 6	23⇒ 12.0
PO 160	O2S 1 heater circuit malfunction, bank 2 (left)	Left O2S 1 heater (before TWC) (G3/3)	13 ≥ 8	23⇒ 10.0
PD 161	O2S 2 heater circuit malfunction, bank 2 (left)	Left O2S 2 heater (after TWC) (G3/5)	13 ≥ 8	23⇒ 13.0

Diagnosis – Diagnostic Trouble Code (DTC) Memory

DTC	Pos	sible cause	DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
PD ו סרו	Fuel trim malfunction, bank 1 (right)	 A Self adaptation of fuel mixture "partial load" at limit from right engine control module (N3/12). B Self adaptation of fuel mixture "CTP" at limit from right engine control module (N3/12). 	13 ≫ 9	Intake air leak, injectors, diaphragm pressure regulator, engine wear.
פרו סק	Fuel trim malfunction, bank 2 (left)	 A Self adaptation of fuel mixture "partial load" at limit from left engine control module (N3/11). B Self adaptation of fuel mixture "CTP" at limit from left engine control module (N3/11). 	13 ≫ 9	Intake air leak, injectors, diaphragm pressure regulator, engine wear.
PD 201	Injector circuit malfunction - cyl. 1	Injector (Y64y1) – cylinder 1	13 ≥ 10	23⇒ 14.0
202 O9	Injector circuit malfunction - cyl. 2	Injector (Y64y2) – cylinder 2	13 ≥ 10	23⇒ 15.0
ED2 D9	Injector circuit malfunction - cyl. 3	Injector (Y64y3) – cylinder 3	13 ≥ 10	23 ⇒ 16.0
P0 204	Injector circuit malfunction - cyl. 4	Injector (Y64y4) – cylinder 4	13 ≥ 10	23 ⇒ 17.0
PO 205	Injector circuit malfunction - cyl. 5	Injector (Y64y5) – cylinder 5	13 ≥ 10	23 ⇒ 18.0
PO 206	Injector circuit malfunction - cyl. 6	Injector (Y64y6) – cylinder 6	13 ≥ 10	23 ⇒ 19.0
P0 207	Injector circuit malfunction - cyl. 7	Injector (Y63y7) – cylinder 7	13 ≥ 10	23 ⇒ 14.0
PO 208	Injector circuit malfunction - cyl. 8	Injector (Y63y8) – cylinder 8	13 ≥ 10	23 ⇒ 15.0
PD 209	Injector circuit malfunction - cyl. 9	Injector (Y63y9) – cylinder 9	13 ≥ 10	23 ⇒ 16.0

Diagnosis – Diagnostic Trouble Code (DTC) Memory

DTC	Pos	ssible cause	DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
PO 210	Injector circuit malfunction - cyl. 10	Injector (Y63y10) – cylinder 10	13 ≥ 10	23 ⇒ 17.0
PD 211	Injector circuit malfunction - cyl. 11	Injector (Y63y11) – cylinder 11	13 ≥ 10	23 ⇒ 18.0
PD 212	Injector circuit malfunction - cyl. 12	Injector (Y63y12) – cylinder 12	13 ≥ 10	23 ⇒ 19.0
PO 300	Random misfire detected	A Random misfireB Random misfire, TWC damaging	13 ≥ 11	Smooth running, Sensor gear adaptation, mixture adaptation, fault freeze frame data
PD 301	Cylinder 1 misfire detected	A Cylinder 1 misfireB Cylinder 1 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 18.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure
20E 09	Cylinder 2 misfire detected	A Cylinder 2 misfire B Cylinder 2 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 19.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure
PO 303	Cylinder 3 misfire detected	A Cylinder 3 misfireB Cylinder 3 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 20.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure

DTC	Possible cause		DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
PD 304	Cylinder 4 misfire detected	A Cylinder 4 misfireB Cylinder 4 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 21.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure
PD 305	Cylinder 5 misfire detected	A Cylinder 5 misfireB Cylinder 5 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 22.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure
PO 306	Cylinder 6 misfire detected	A Cylinder 6 misfireB Cylinder 6 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 23.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure
PD 301	Cylinder 7 misfire detected	A Cylinder 7 misfireB Cylinder 7 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 18.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure
PO 308	Cylinder 8 misfire detected	A Cylinder 8 misfire B Cylinder 8 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 19.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure
PO 309	Cylinder 9 misfire detected	A Cylinder 9 misfireB Cylinder 9 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 20.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure

DTC	Possi	ible cause	DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
PO 310	Cylinder 10 misfire detected	A Cylinder 10 misfireB Cylinder 10 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 21.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure
PD 311	Cylinder 11 misfire detected	A Cylinder 11 misfireB Cylinder 11 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 22.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure
51E 09	Cylinder 12 misfire detected	A Cylinder 12 misfireB Cylinder 12 misfire, TWC damaging	13 ≥ 11	$24 \Rightarrow 23.0$ $24 \Rightarrow 24.0$ $36 \Rightarrow 1.0 - 2.0$ Compression pressure
PD 325	KS 1 circuit malfunction (right front)	Right KS 1 (A30g1)	13 ≥ 12	Wiring, connector, A30 g1
PD 330	KS 2 circuit malfunction (right rear)	Right KS 2 (A30g2)	13 ≥ 12	Wiring, connector, A30 g2
PD 335	CKP sensor circuit malfunction, bank 1 (right)	Right CKP sensor (L5/5)	13 ≥ 13	24 ⇒ 10.0

Diagnosis – Diagnostic Trouble Code (DTC) Memory

DTC		Possit	ble cause	DTC	Test step/Remedy 1)
		SAE nomenclature	Explanation	Description	
PO 341		CMP sensor circuit range/performance, bank1 (right)	Right camshaft Hall-effect sensor (B6/3)	13 ≥ 14	24 ⇒ 11.0
PD 410		AIR injection system malfunction	AIR system malfunction (logic chain)	13 ≥ 15	$23 \Rightarrow 20.0 - 21.0$ Hose disconnected from actuator.
PO 422		TWC efficiency below threshold, right	Right TWC efficiency below threshold	13 ≥ 16	Replace right TWC
PO 432		TWC efficiency below threshold, left	Left TWC efficiency below threshold	13 ≥ 16	Replace left TWC
P0 440	Only (USA) Model 140, Model 129 as of 09/97	EVAP system malfunction	EVAP malfunction (logic chain)	13 ≥ 17	23 ⇒ 24.0 - 26.0
P0 441		EVAP system incorrect purge flow	Right EVAP system malfunction	13 ≥ 18	23 ⇒ 24.0 - 25.0
P0 442	Only (USA) Model 140, Model 129 as of 09/97	EVAP system leak detected (small leak)	EVAP system, small leak	13 ≥ 17	23 ⇒ 26.0
P0 443		EVAP system purge control valve circuit malfunction, bank 1 (right)	Right purge control valve (Y58/3)	13 ≥ 19	23 ⇒ 24.0
P0 446	Only (USA) Model 140, Model 129 as of 09/97	EVAP system vent control malfunction	 A. Charcoal canister shut-off valve, output stage B. Charcoal canister shut-off valve (Y58/4) 	13 ≥ 20	$23 \Rightarrow 24.0, 26.0$ $23 \Rightarrow 28.0$ $23 \Rightarrow 27.0$

Diagnosis – Diagnostic Trouble Code (DTC) Memory

		Possib	Possible cause		Test step/Remedy 1)
		SAE nomenclature	Explanation	Description	
PO 450	Only (USA) Model 140, Model 129 as of 09/97	EVAP system pressure sensor malfunction	Fuel tank pressure sensor (B4/3)	13 ≥ 21	$23 \Rightarrow 28.0$ Charcoal canister plugged.
	Only (USA) Model 129 up to 09/97		Purge monitoring pressure sensor (B4/4)	13 ≥ 22	23 ⇒ 29.0
PD 455	Only (USA) Model 140, Model 129 as of 09/97	EVAP system leak detected (large leak)	EVAP system, large leak, Fuel tank pressure sensor (B4/3)	13 ≥ 17	$23 \Rightarrow 26.0$ $23 \Rightarrow 28.0$
PO 462		Fuel level sensor circuit low input	Fuel tank level too low		Fill fuel tank
PO 500		VSS sensor malfunction	A VSS left front B VSS left rear	13 ≥ 23	$25 \Rightarrow 8.0$ $25 \Rightarrow 9.0$
PO 507		ISC rpm higher than expected	Idle control system	13 ≥ 24	25 ⇒ 4.0, 5.0, 10.0
PO 560		System voltage malfunction	Voltage supply to right engine control module (N3/12)	13 ≥ 25	23 ⇒ 1.0 - 3.0
PO 565		Cruise control switch	CC switch (S40)		26 ⇒ 1.0
PO 600		Serial communication link malfunction	CAN bus from ESP/SPS control module (N47-5)	13 ≥ 26	23 ⇒ 30.0

Diagnosis – Diagnostic Trouble Code (DTC) Memory

DTC	Possib	le cause	DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
P0 604	Internal control module random Access memory (RAM) error	 A Engine control module left (N3/11) or right (N3/12) B Engine control module left (N3/11) or right (N3/12) 		(N3/11) or (N3/12)
PO 605	Internal control module random Access memory (RAM) error	Engine control module left (N3/11) or right (N3/12)		(N3/11) or (N3/12)
00 ססר	Transmission control system malfunction Gear unplausi, transmission leak, Command sleeve stuck in pressure pos.	Read DTC memory of transmission control module DTC description DTC description	13 ≥ 27 13 ≥ 28	Test ETC, see DM, Chassis & Drivetrain, Vol. 1, section 2.
90 JO2	Transmission control system electrical Voltage supply to solenoid valves	Read DTC memory of transmission control module DTC description	13 ≥ 29 13 ≥ 30	Test ETC, see DM, Chassis & Drivetrain, Vol. 1, section 2.
ר חצור PD PD PD	Input/turbine speed sensor circuit malfunction RPM sensor voltage supply and function	Read DTC memory of transmission control module DTC description	13 ≫ 31	Test ETC, see DM, Chassis & Drivetrain, Vol. 1, section 2.
PO 120	Output speed sensor circuit malfunction CAN fault recognition	Read DTC memory of transmission control module DTC description	13 ≥ 32	Test ETC, see DM, Chassis & Drivetrain, Vol. 1, section 2.
ספר ס9	Incorrect gear ratio Ratio comparison negative (numerous)	Read DTC memory of transmission control module DTC description	13 ≥ 33	Test ETC, see DM, Chassis & Drivetrain, Vol. 1, section 2.

Diagnosis – Diagnostic Trouble Code (DTC) Memory

DTC	Possib	le cause	DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
PD 740	Torque converter clutch system malfunction	Read DTC memory of transmission control module DTC description	13 ≥ 34	Test ETC, see DM, Chassis & Drivetrain, Vol. 1, section 2.
PD 743	Torque converter clutch system electrical	Read DTC memory of transmission control module DTC description	13 ≥ 35	Test ETC, see DM, Chassis & Drivetrain, Vol. 1, section 2.
PD 748	Pressure control solenoid electrical Pressure control valve modulation press. Pressure control valve shift pressure	Read DTC memory of transmission control module DTC description DTC description	13 ≥ 36 13 ≥ 37	Test ETC, see DM, Chassis & Drivetrain, Vol. 1, section 2.
PO 753	Shift solenoid A electrical 1-2/4-5 solenoid shift valve	Read DTC memory of transmission control module DTC description	13 ≥ 38	Test ETC, see DM, Chassis & Drivetrain, Vol. 1, section 2.
PO 758	Shift solenoid B electrical 2-3 solenoid shift valve	Read DTC memory of transmission control module DTC description	13 ≥ 39	Test ETC, see DM, Chassis & Drivetrain, Vol. 1, section 2.
PO 763	Shift solenoid C electrical 3-4 solenoid shift valve	Read DTC memory of transmission control module DTC description	13 ≥ 40	Test ETC, see DM, Chassis & Drivetrain, Vol. 1, section 2.
PO 809	Angle deviation between camshaft and crankshaft	Angle deviation between camshaft and crankshaft		Check basic adjustment of camshaft

DTC	Possil	ple cause	DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
PI 146	Mass air flow circuit malfunction, bank 2 (left) Left hot film MAF sensor (B2/6)	Left hot film MAF sensor (B2/6) DTC description	13 ≥ 1	23 ⇒ 4.0
PI 147	ECT circuit malfunction, bank 2 (left) Left ECT sensor	Left ECT sensor (B11/9) DTC description	13 ≥ 4	23 ⇒ 7.0
PI 148	IAT circuit malfunction, bank 2 (left) Left IAT sensor	Left IAT sensor (B17/5) DTC description	13 ≥ 3	23 ⇒ 8.0
PI 149	MAP circuit malfunction, bank 2 (left) Left pressure sensor	Left pressure sensor (B28/1) DTC description	13 ≥ 2	23 ⇒ 5.0
PI 162	Throttle position sensor circuit malfunction, bank 2 (left) Left EA/CC/ISC actuator actual value potentiometer	Left EA/CC/ISC actuator actual value potentiometer (M16/4r1, M16/4r2) DTC description	13 ≥ 5	$25 \Rightarrow 6.0$
PI 163	Oil level switch	Oil level switch (S43)		23 ⇒ 31.0
ררו וP	Oil temperature	Oil temperature sensor (B1)		23 ⇒ 32.0
PI 186	Fuel safety shut-off recognized	EA/CC/ISC actuator (M16/6)		$25 \Rightarrow 6.0 - 7.0,$ EA/CC/ISC actuator (M16/6) sticks or jammed, Check intake system for residue.

Diagnosis – Diagnostic Trouble Code (DTC) Memory

DTC	Possil	ole cause	DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
P1 300	CKP sensor circuit malfunction, bank 2 (left) Left CKP sensor	Left CKP sensor (L5/4) DTC description	13 ≥ 13	24 ⇒ 10.0
PI 384	KS 1 circuit malfunction (left front) Left knock sensor 1	Left knock sensor 1 (A29g1) DTC description	13 ≥ 12	Wiring, connector, A29g1
P1 385	KS 2 circuit malfunction (left rear) Left knock sensor 2	Left knock sensor 2 (A29g2) DTC description	13 ≥ 12	Wiring, connector, A29g2
P1 386	Knock sensor control from ECM (N3/12) at end stop Knock sensor regulation	Knock sensor regulation from right engine control module (N3/12) hardware failure DTC description	13 ≥ 41	 Increased knock tendency due to bad fuel, carbon in combustion chamber or mechanical damage. Engine control module (N3/12)
PI 397	CMP sensor circuit range/performance, bank 2 (left) Left camshaft Hall-effect sensor	Left camshaft Hall-effect sensor (B6/2) DTC description	13 ≥ 14	24 ⇒ 11.0
PI 420	AIR pump switchover valve AIR pump switchover valve	AIR pump switchover valve (Y32) DTC description	13 ≥ 42	23 ⇒ 21.0
PI 443	EVAP system malfunction Left EVAP system malfunction	Left EVAP system malfunction DTC description	13 ≥ 18	23 ⇒ 24.0 - 25.0
PI 453	AIR relay module AIR relay module	AIR relay module (K17) DTC description	13 ≥ 42	23 ⇒ 20.0

	Possibl	e cause	DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
PI 463	Left AIR system malfunction Left AIR system malfunction	Left AIR system malfunction DTC description	13 ≥ 15	$23 \Rightarrow 20.0 - 21.0$ Hose disconnected from actuator.
PI 490	EVAP system purge control valve circuit malfunction, bank 2 (left) Left purge control valve	Left purge control valve (Y58/2) DTC description	13 ≥ 19	23 ⇒ 24.0
PI 519	Right adjustable camshaft timing solenoid Right adjustable camshaft timing solenoid	Right adjustable camshaft timing solenoid (Y49/2) (logic chain) DTC description	13 ≥ 43	23 ⇒ 22.0-23.0
PI 522	Left adjustable camshaft timing solenoid Left adjustable camshaft timing solenoid	Left adjustable camshaft timing solenoid (Y49/1) (logic chain) DTC description	13 ≥ 43	23 ⇒ 22.0 - 23.0
Pt 525	Right adjustable camshaft timing solenoid Right adjustable camshaft timing solenoid	Right adjustable camshaft timing solenoid (Y49/2) DTC description	13 ≥ 44	23 ⇒ 22.0 - 23.0
PI 533	Left adjustable camshaft timing solenoid Left adjustable camshaft timing solenoid	Left adjustable camshaft timing solenoid (Y49/1) DTC description	13 ≥ 44	23 ⇒ 22.0 - 23.0
PI 542	Pedal value sensor Pedal value sensor	Pedal value sensor (B37) DTC description	13 ≥ 45	25 ⇒ 4.0 - 5.0

	Possibl	le cause	DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
PI 570	CAN signal from DAS control module to right engine control module (N3/12)	CAN signal from DAS control module (N54/1) to right engine control module (N3/12) interrupted.		23 ⇒ 30.0
PI 580	Right EA/CC/ISC actuator Right EA/CC/ISC actuator	Right EA/CC/ISC actuator (M16/3) DTC description	13 ≥ 46	25 ⇒ 7.0
PI 581	Left EA/CC/ISC actuator Left EA/CC/ISC actuator	Left EA/CC/ISC actuator (M16/4) DTC description	13 ≥ 46	25 ⇒ 7.0
PI 584	Stop lamp switch	Stop lamp switch (S9/1)		26 ⇒ 1.0
PI 587	Left engine control module voltage supply Left engine control module	Left engine control module (N3/11) voltage supply DTC description	13 ≥ 25	23 ⇒ 1.0 - 3.0
PI 588	CAN signal from RCL control module to left engine control module	CAN signal from RCL to left engine control module (N3/11)		23 ⇒ 30.0
PI 589	Knock sensor control from left engine control module at end stop Left engine control module (N3/11) hardware failure	Knock sensor regulation from left engine control module (N3/11) hardware failure DTC description	13 ≥ 41	 Increased knock tendency due to bad fuel, carbon in combustion chamber or mechanical damage. Engine control module (N3/11)

Diagnosis – Diagnostic Trouble Code (DTC) Memory

	Possibl	e cause	DTC	Test step/Remedy 1)
	SAE nomenclature	Explanation	Description	
P1 605	Body acceleration sensor (up to 06/96) Body acceleration sensor	Body acceleration sensor (B24) (up to 06/96) DTC description	13 ≥ 47	23 ⇒ 36.0
		Poor road/traction condition recognition signal (via comparison of VSS rpm signals) (as of 06/96)		Test ASR/ESP see DM, Chassis and Drivetrain, Vol. 3, Section 9, 10
P1 632	Engine control module	Left engine control module (N3/11)		(N3/11)
PI 641	Engine control module CAN bus interrupted	 A. Right CTP signal implausible B. Left CTP signal implausible C. CAN signal to left engine control module (N3/11) interrupted DTC description 	13 ≥ 26	$25 \Rightarrow 10.0,$ $25 \Rightarrow 10.0,$ $23 \Rightarrow 30.0$
PI 747	CAN signal from ETC CAN bus interrupted	CAN signal from ETC (N15/3) DTC description	13 ≥ 26	23 ⇒ 30.0

Diagnosis – Complaint Related Diagnostic Chart – Injection/Ignition

Risk of severe injury when touching ignition parts which produce high voltages. Do not touch ignition components. Persons with heart pacemakers are not to perform repairs on this type of ignition system.

Preparation for Test:

1. Review 11, 21, 22, 23, 24, 31, 33

Complaint/Problem	Possible cause	Test step/Remedy 1)	Actual value Engine test Menu item
Engine starts and accelerates poorly when cold	Injector (Y62) control and injection duration.	$23 \Rightarrow 14.0 - 19.0$	2/7
	Hot film MAF sensor (B2/6 or B2/7).	$23 \Rightarrow 4.0$	1/7
	ECT sensor (B11/9 or B11/10).	$23 \Rightarrow 7.0$	3/7
	Ignition voltage too low.	$24 \Rightarrow 24.0$	-
	Intake air leak.	Remedy leak.	-
Engine does not start	No voltage supply from base module (N16/1). Malfunction of drive authorization system (DAS) . Fuel pumps defective. No compression, oil pressure too high. Ignition voltage too low.	$23 \Rightarrow 1.0 - 3.0$ $23 \Rightarrow 30.0$ $34 \Rightarrow 2.0$ Check compression and oil pressure. $24 \Rightarrow 24.0$	- DAS 1/1 - -
Engine has uneven idle	Camshaft timing.	$23 \Rightarrow 22.0 - 23.0$	2/7
	Injector (Y62) control and injection duration.	$23 \Rightarrow 14.0 - 19.0$	2/7
	Intake air leak.	Remedy leak.	-

Diagnosis – Complaint Related Diagnostic Chart – Injection/Ignition

Complaint/Problem	Possible cause	Test step/Remedy 1)	Actual value Engine test Menu item
Engine has insufficient output	TWC flow restricted. Left or right O2S 1 (G3/3 or G3/4) (before TWC). ECT sensor (B11/9 or B11/10). Hot film MAF sensor (B2/6 or B2/7). Camshaft timing.	Check exhaust back pressure, see DM, Engines, Vol. 1, section A, "Engine Output" $23 \Rightarrow 10.0 - 11.0$ $23 \Rightarrow 7.0$ $23 \Rightarrow 4.0$ $23 \Rightarrow 22.0 - 23.0$	 5/7 3/7 1/7 2/7
Engine runs unevenly (shakes)	Injector (Y62) control and injection duration. Injector leaking, spray pattern. Left or right O2S 1 (G3/3 or G3/4) (before TWC). Ignition voltage too low. Compression on one or more cylinders too low. Intake air leak.	$23 \Rightarrow 14.0 - 19.0$ $36 \Rightarrow 1.0$ $23 \Rightarrow 10.0 - 11.0$ $24 \Rightarrow 24.0$ Check compression. Remedy leak.	2/7 5/7
Engine runs unevenly (misfiring)	Ignition voltage too low. Hot film MAF sensor (B2/6 or B2/7).	$24 \Rightarrow 24.0$ $23 \Rightarrow 4.0$	- 1/7
Engine surges after cold start	Intake air leak.	Remedy leak.	-
Transition failure during warm-up	ECT sensor (B11/9 or B11/10). Hot film MAF sensor (B2/6 or B2/7). Intake air leak.	$23 \Rightarrow 7.0$ $23 \Rightarrow 4.0$ Remedy leak.	3/7 1/7 -
Transition failure when warm or with increased fuel consumption	Left or right O2S 1 (G3/3 or G3/4) (before TWC). Purge control valve (Y58/2 or Y58/3) stuck in open position.	$23 \Rightarrow 10.0 - 11.0$ $23 \Rightarrow 24.0 - 25.0$	5/7 3/7

Diagnosis – Complaint Related Diagnostic Chart – Injection/Ignition

Complaint/Problem	Possible cause	Test step/Remedy 1)	Actual value Engine test Menu item
Engine vibrates	Hot film MAF sensor (B2/6 or B2/7). Ignition voltage too low. Left or right O2S 1 (G3/3 or G3/4) (before TWC).	$23 \Rightarrow 4.0$ $24 \Rightarrow 24.0$ $23 \Rightarrow 10.0 - 11.0$	1/7 - 5/7
EPC MIL (A1e43) illuminates and EA is in "limp- home" mode	Nominal value potentiometer in pedal value sensor (B37). EA/CC/ISC actuator actual value potentiometer.	$25 \Rightarrow 4.0 - 5.0$ $25 \Rightarrow 6.0 - 7.0$	4/7 4/7

Diagnosis – Trouble Code Description

≥1		Hot film MAF sensor (B2/6, B2/7)
1	OBD trouble code	PDIDD Right cylinder bank PII46 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Hot film MAF sensor signal threshold values
5	Lower threshold value Upper threshold value	approx. 0.2 V approx. 5.4 V
	Plausibility	The air mass can not deviate more than approx. 130% from the theoretically required air mass (stored map, engine rpm dependent)
	Test duration per threshold value	< 5 seconds

Diagnosis – Trouble Code Description

≥2		Pressure sensor (B28/1, B28/2)
1	OBD trouble code	PDIDS Right cylinder bank PII49 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Pressure sensor signal threshold value (intake manifold pressure)
5	Lower threshold value Upper threshold value During deceleration	approx. 0.27 V approx. 4.9 V > approx. 2.5 V
	Test duration per threshold value	< 5 seconds

≥3		IAT sensor (B17/5, B17/6)
1	OBD trouble code	PDIID Right cylinder bank PII4B Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Intake air temperature threshold values
5	Lower threshold value Upper threshold value Test duration per threshold value	> 300 kΩ (approx50 °C) < 150 Ω (approx. +125 °C) < 1 second
6	i	In case of a fault driving continues with the substitude value of +20 °C. If the signal is plausible again, a switchover to the signal of the IAT sensor occurs.

Diagnosis – Trouble Code Description

≥4		ECT sensor (B11/9, B11/10)
1	OBD trouble code	P0115 Right cylinder bank P1147 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Engine coolant temperature threshold values
5	Lower threshold value Upper threshold value	> 50 kΩ (approx. –38 °C) < 50 Ω (approx. +160 °C)
	Test duration per threshold value	< 1 second
	Plausibility	The temperature rise after the cold start is compared to a stored temperature pattern (map). After a predetermined time a temperature of at least +38 °C must be reached.
6	i	In case of a fault driving continues with the substitude value from the temperature pattern. If the signal is plausible again, a switchover to the signal of the ECT sensor occurs.

Diagnosis – Trouble Code Description

≥5		Actual value potentiometer in EA/CC/ISC actuator (M16/3, M16/4)
1	OBD trouble code	PDI2D Right cylinder bank PII62 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Threshold value of actual value potentiometers r1 or r2
5	Reference potentiometer r1 Lower threshold value Upper threshold value Actual value potentiometer r2 Lower threshold value	<0.355 V >4.765 V <0.295 V
	Upper threshold value	>4.63 V

≥6		O ₂ sensor signal
1	OBD trouble code	PDI3DRight O2S 1 (before TWC) (G3/4)PDI3ERight O2S 2 (after TWC) (G3/6)PDI4DRight O2S 1 heater (before TWC) (G3/4)PDI5DLeft O2S 1 (before TWC) (G3/3)PDI5ELeft O2S 2 (after TWC) (G3/5)PDI5DLeft 02S 1 (before TWC) (G3/3)
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	A. O_2 sensor signal threshold value B. Change of O_2 sensor condition
5	 A. O₂ sensor signal threshold value Lower threshold value Upper threshold value Test duration B. Change of O₂ sensor condition 	< - 0.15 V > 1.5 V < 5 seconds After approx. 220 seconds with energized O ₂ sensor heater, the O ₂ sensor signal must not remain
		longer than 5 seconds in the voltage window of $0.4 - 0.6$ V.
6	Prerequisite for test	 Engine speed approx. 1000 – 2000 rpm Load approx. 15 – 50% TWC temperature > approx. 300 °C Lambda control released
7	i	All electrical connection faults of the O_2 sensors before TWC or after TWC (open or short circuit towards ground or battery voltage) are recognized with this test.

Diagnosis – Trouble Code Description

≥7		A. O2 sensor ageing correction value exceeded B. O2 sensor ageing time period too long
1	OBD trouble code	PDI33 Right O2S 1 (before TWC) (G3/4) PDI53 Left O2S 1 (before TWC) (G3/3)
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	A. Correction value exceeded B. Time period too long
5	A. Correction value threshold value B. Time period threshold value Test duration	Approx. ± 1.2 seconds < approx. 7.5 seconds (average value from 9 measurements) < 80 seconds
6	Prerequisite for test	 Engine speed approx. 1000 – 2000 rpm Load approx. 15 – 50% TWC temperature > approx. 300 °C Lambda control released No fault with TWC operation No fault with O₂ sensor heater
7	Test sequence	The O_2 sensors after the TWC are required for the monitoring of the catalyst effectiveness and improvement of the lambda control (two sensor control). The lambda mean value is established from O_2 sensor signals and from it a correction value is determined for the lambda control. With the correction value (value for new O_2 sensor approx. 0) the aging of the O_2 sensor before the TWC is compensated for to a certain degree. If the correction value exceeds the threshold value the O_2 sensor before the TWC must be replaced. Additionally, the time period of the O_2 sensor signal is evaluated.
8	i	Time period of the O_2 sensor before TWC too long: O_2 sensor after TWC is no longer monitored. Correction value of the O_2 sensor before TWC exceeded: O_2 sensor after TWC is further monitored. If faults are recognized simultaneously for the O_2 sensor before TWC and after TWC, only the O_2 sensor after TWC is defective in most cases.

≥8		O2 sensor heater
1	OBD trouble code	PDI35 Right O2S 1 (before TWC) (G3/4) PDI41 Right O2S 2 (after TWC) (G3/6) PDI55 Left O2S 1 (before TWC) (G3/3) PDI61 Left O2S 2 (after TWC) (G3/5)
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Calculated resistance value of O ₂ sensor heater
5	Lower threshold value Upper threshold value	< approx. 4.4 Ω (corresponds to approx. 2.7 A at 12 V) > approx. 18.4 Ω (corresponds to approx. 0.65 A at 12 V)
6	Prerequisite for test	O ₂ sensor heater ON and heating period of approx. 220 seconds expired.

≥9		 A. Self adaptation of fuel mixture "partial load" at limit from engine control module (N3/11, N3/12) B. Self adaptation of fuel mixture "CTP" at limit from engine control module (N3/11, N3/12)
1	OBD trouble code	PDITD Right cylinder bank PDITB Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	The DTC storage takes place immediately. Activation of the CHECK ENGINE MIL takes place after two consecutive trips with fault.
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Self-adaptation of fuel mixture threshold value
5	A. CTP threshold value B. Partial load threshold value	Approx. \pm 1.0 ms (corresponds to approx. 20% of the injection duration at idle) 0.77 – 1.28 factor
6	i	In order to obtain a new value for the self-adaptation of the fuel mixture a trip of approx. 30 minutes is required. When starting the engine the ECT must be < 60 °C.

≥10		Injectors (Y62)
1	OBD trouble code	P0201 - P0212
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Current/voltage test at the individual injector
5	Current draw threshold value Voltage threshold value	> 4.2 A < 2.5 V
	Test duration	< 5 seconds
6	i	The activation of each injector is tested for open and short circuit (towards ground or battery). In case of a fault the final stage is immediately no longer activated.
7		With a short towards ground the corresponding injector remains continuously open.

Engine 120

≥11		A. Misfire B. Misfire, TWC damaging
1	OBD trouble code	PD3DD Misfires PD3D1 - PD312 Misfire, assigned to each individual cylinder
2	Storage of DTC and activation of CHECK ENGINE MIL	 A. Misfire (emission limit) Ignition misfire within 1000 engine revolutions. CHECK ENGINE MIL is activated (illuminated) after two consecutive trips with fault B. Misfire "TWC damaging" Ignition misfire within 200 engine revolutions. CHECK ENGINE MIL is activated (illuminated via blinking) immediately with ignition misfire.
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Number of recognized ignition misfires (recognition via engine smooth running evaluation)
5	Threshold values	 A. > 20 misfires within 1000 engine revolutions B. > 6 misfires within 200 engine revolutions (map dependent from engine rpm and load)
6	Prerequisite for test	 Engine speed approx. 500 – 4000 rpm Load change < 100% per second Engine was started at least 5 seconds previously No ESP control function VSS adaptation during deceleration already took place Body acceleration sensor signal below threshold value (approx. 0.5 g) No fault signal from camshaft Hall-effect sensor No transmission range change No deceleration shut-off
7	i	If the threshold value for misfire "TWC damaging" is exceeded, the CHECK ENGINE MIL blinks immediately. If too many misfires occur on one cylinder, this cylinder is turned off (cylinder selective fuel shut-off). After turning off of cylinders the CHECK ENGINE MIL changes from blinking to continuous illumination after the next engine start. If ignition misfires are recognized with a low fuel tank level (fuel reserve indicator lamp ON) the DTC PD462 is indicated. Combustion misfires caused by lack of fuel are recognized via this additional information.

≥12		Knock sensor
1	OBD trouble code	PD325 Right KS 1 (A30g1) PD330 Right KS 2 (A30g2) P1384 Left KS 1 (A29g1) P1385 Left KS 2 (A29g2)
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Knock sensor signal (in engine control module (ME-SFI) calculated comparison value)
5	Lower threshold value Upper threshold value	Approx. 0.19 V Approx. 4.98 V
6	Prerequisite for test	 Engine at operating temperature Engine speed > 3600 rpm Load > 40% Knock control not activated
7	i	The safety retard adjustment occurs on all cylinders in case of a fault.

≥13		CKP sensor (L5/4, L5/5)
1	OBD trouble code	PD335 Right cylinder bank P1300 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	CKP sensor signal (counting of teeth on flywheel)
5	Lower threshold value Upper threshold value	(60 - 2 teeth) - 1 tooth (60 - 2 teeth) + 1 tooth
	Test duration	< 5 seconds

≥14		Camshaft Hall-effect sensor (B6/2, B6/3)
1	OBD trouble code	PD341 Right cylinder bank P1397 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Camshaft Hall-effect sensor signal
5	Plausibility No signal Number	The signal must change within 2 engine revolutions from $0 - 1$ to $1 - 0$ Maximum 1 signal change per engine revolution
6	Prerequisite for test	 Engine revolutions 25 – 6300 rpm No CKP sensor fault

≥15		AIR system malfunction (logic chain)
1	OBD trouble code	PDYID Right cylinder bank PIYE3 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Once per trip
4	Checked signal or condition	O ₂ sensor signal before TWC
5	Threshold value Test duration	Lambda control factor approx. 25% (lean mixture recognized, engine control module at "rich" stop) < 15 seconds
6	Prerequisite for test	 Engine at CTP (idle) Vehicle stationary AIR pump activated at least once after starting engine No fault for voltage supply of purge switchover valve, AIR pump switchover valve and electrical AIR pump or electromagnetic AIR pump clutch No fault in purge system No fault of EA/CC/ISC actuator No combustion misfire No fault of O₂ sensor before TWC ageing No fault in CAN data bus Self-adaptation of fuel mixture not at threshold value Atmospheric pressure above approx. 780 mbar (e.g. no test is performed above approx. 8,000 ft altitude) Engine coolant temperature < approx. 90°C Lambda control released
7	Test sequence	With the start of the logic chain all functions for the automatic mixture adaptation are blocked, the purge switchover valves are closed and the actual lambda control factor is recorded.Subsequently AIR injection takes place. The mixture must become leaner. Correspondingly the lambda control factor reacts with an increase of approx. + 25%.
8	i	If a prerequisite changes during the test, the test is canceled and started later again.

≥16		TWC efficiency below threshold
1	OBD trouble code	PD422 Right PD432 Left
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Voltage ratio (amplitudes) O ₂ sensor signal after TWC to O ₂ sensor signal before TWC
5	Threshold value	O_2 sensor signal after TWC maximum 50% of O_2 sensor signal before TWC (at more than 2 of 9 measurements)
	Test duration	Approx. 210 seconds
6	Prerequisite for test	 Engine speed approx. 900 – 2000 rpm Load approx. 10% to 45% TWC temperature > approx. 350 °C Lambda control released and lambda > 0.4 No fault in O₂ sensors (signal, heater, aging) No combustion misfire
7	i	The TWC is evaluated via its oxygen storage capability. Within the specified engine speed and load range several measurements must take place. The results are compared with a map and if necessary a fault is recognized. The amplitude of the O_2 sensor voltage after TWC can be at the most half as large as the amplitude of the O_2 sensor voltage before TWC (Note: If, for example, no monolith would be installed in the TWC, the O_2 sensor signals before and after the TWC would be identical). If the DTCs for the catalyst and the O_2 sensor before TWC are displayed simultaneously, replace the O_2 sensor before TWC first. If subsequently no TWC fault is displayed any more, the effectiveness of the TWC is slightly reduced but it does not have to be replaced at this time.

≥17		EVAP system (logic chain) Only I Model 140 only, Model 129 as of 09/97
1	OBD trouble code	P0440 leaking P0442 small leak P0455 large leak
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Once per trip
4	Checked signal or condition	Fuel tank pressure sensor pressure values
5	Large leak test	A vacuum buildup of 0.3 mbar per second can not be obtained.
	Small leak test	With the system closed, the vacuum loss is larger than approx. 15% of the vacuum obtained at the large leak test.
	Test duration	< 30 seconds
6	Prerequisite for test	 Engine at CTP (idle) Vehicle stationary The time purge system is inoperative after starting engine has elapsed (approx. 16 minutes) Lambda control released Air injection not active Atmospheric pressure above approx. 780 mbar (e.g. no test is performed above approx. 8,000 ft altitude) Charcoal canister only slightly saturated Lambda reading during the test > approx. 0.9 With the fuel reserve indicator lamp ON or full tank only the large leak test takes place Severe sloshing of fuel in the tank (inadmissible pressure fluctuations), the fuel tank pressure sensor (B4/3) recognizes it and interrupts the test No fault at activated charcoal canister shut-off valve No fault at fuel tank pressure sensor
7	i	With defective fuel tank pressure sensor DTC P0455 is displayed

≥18		EVAP not functioning
1	OBD trouble code	P미닉닉 Right cylinder bank PI닉닉 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Once per trip
4	Checked signal or condition	Pressure variations in line from charcoal canister to purge control valve
5	Fault Test duration	Pressure deviation difference less than approx. 27 mbar < 15 seconds
6	Prerequisite for test	 Engine at CTP (idle) Load approx. 10 – 25% Activation of purge control valve with an on-off ratio between approx. 5 – 25%

≥19		Purge control valve
1	OBD trouble code	P0443 Right cylinder bank P1490 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Once per trip
4	Checked signal or condition	Voltage and current at respective purge control valve
5	Threshold values Short circuit to ground Short circuit to approx. + 12 V Open circuit	Voltage < 4 V Current > approx. 4.2 A No voltage (approx. 4 V – 8 V)

≥20		Only IIA Model 140 only, Model 129 as of 09/97 A. Charcoal canister shut-off valve, output stage B. Charcoal canister shut-off valve (Y58/4)
1	OBD trouble code	РОЧЧБ
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Once per trip
4	Checked signal or condition	Voltage supply at charcoal canister shut-off valve and fuel tank pressure
5	Voltage supply threshold values Short circuit to ground Short circuit to approx. + 12 V Open circuit Fuel tank pressure	Voltage < 4 V Current > approx. 4.2 A No voltage (approx. 4 V – 8 V) > approx. 3.5 mbar
	Test duration	< 10 seconds
6	i	With closed charcoal canister shut-off valve at least approx. 3.5 mbar vacuum must be registered by the fuel tank pressure sensor.

≥21		Only USA Model 140 only, Model 129 as of 09/97 Fuel tank pressure sensor (B4/3)
1	OBD trouble code	PD450
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Once per trip
4	Checked signal or condition	Fuel tank pressure sensor (B4/3) signal
5	A. Upper threshold value Lower threshold value Test duration	 > approx. 4.7 V (corresponds to approx. 35 mbar pressure) < approx. 0.1 V (corresponds to approx. 60 mbar vacuum) 10 seconds
	B. Lower threshold value Upper threshold value Test duration	approx. 0.27 V approx. 4.9 V < 5 seconds
6	Prerequisite for test	The time purge system is inoperative after starting engine has elapsed (approx. 10 seconds)
7	i	Map for fuel tank pressure sensor (B4/3): – 50 mbar approx. 0.5 V; 0 mbar approx. 3.0 V; + 30 mbar approx. 4.5 V

≥22		Purge monitoring pressure sensor (B4/4) Only (15) Model 129 up to 08/97
1	OBD trouble code	PO450
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Once per trip
4	Checked signal or condition	Purge monitoring pressure sensor (B4/4) signal
5	A. Upper threshold value Lower threshold value Test duration	 > approx. 4.7 V (corresponds to approx. 35 mbar pressure) < approx. 0.1 V (corresponds to approx. 60 mbar vacuum) 10 seconds
	B. Lower threshold value Upper threshold value Test duration	approx. 0.27 V approx. 4.9 V < 5 seconds
6	Prerequisite for test	The time purge system is inoperative after starting engine has elapsed (approx. 10 seconds)

≥23		A. VSS left front B. VSS left rear
1	OBD trouble code	P0500
2	Storage of DTC and activation of CHECK ENGINE MIL	Storage of DTC after two consecutive trips with fault No activation of CHECK ENGINE MIL
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	A. VSS left front B. VSS left rear
5	Threshold value Test duration	The VSS (digital signal from ESP control module) must be recognized as of approx. 7 mp/h < 5 seconds
	Plausibility Test duration	As of approx. 40 km/h is valid: Speed front minus speed rear < \pm 30 km/h < 30 seconds
6	Prerequisite for test	 Engine speed approx. 2500 – 4500 rpm Load > approx. 40% Transmission range D
7	i	The wheel revolutions are registered and evaluated by the ESP control module. The engine control module (ME-SFI) receives a processed digital speed signal. After DTC recognition (e.g. driving on a dynamometer) the DTC memory of the ME and ESP control modules must be read.

≥24		Idle speed control system
1	OBD trouble code	רספס
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Engine rpm
5	Upper threshold value Lower threshold value	Nominal value + 300 rpm Nominal value – 250 rpm
	Test duration	< 30 seconds
		If the actuation of the actuator motor in the EA/CC/ISC actuator is changed by the engine control module the new nominal value must be obtained within approx. 25 seconds.
6	Prerequisite for test	 Engine temperature > approx. 20 °C Automatic A/C OFF Vehicle stationary

≥25		Voltage supply to engine control module (N3/10)
1	OBD trouble code	PDSED for right cylinder bank PISB7 for left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Battery voltage
5	Lower threshold value Upper threshold value Test duration	approx. 8 V approx. 17.5 V < 5 seconds
6	Prerequisite for test	Waiting time of approx. 180 seconds after starting engine has elapsed

≥26		CAN bus interrupted
1	OBD trouble code	PDEDD CAN from ESP control module PIEHI CAN to left engine control module (N3/11) PIHHI CAN from ETC control module
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	CAN communications
5	Test duration	< 15 seconds
5	i	The data exchange between the control modules is monitored via the CAN element in the engine control module (ME-SFI).

≥27		Transmission range implausible or transmission slips
1	OBD trouble code	00רסק
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Calculated transmission ratios outside tolerance
5	Permissible ratios	1.986 - 2.389 2nd gear 1.355 - 1.455 3rd gear 0.970 - 1.030 4th gear 0.476 - 0.536 5th gear (calculated value) 1.726 - 2.126 reverse gear < 2 seconds
6	Prerequisite for test	 Engine speed > 400 rpm Output shaft speed > 150 rpm (> approx. 20 km/h) No gear change
7	Test sequence	If no gear change occurs, the ETC control module recognizes the engaged driving range on the gear ratio. If the gear ratio is outside the tolerance or the driving range is implausible the modulating pressure is adjusted to its highest value after approx. 0.5 seconds. Remains the gear ratio outside the tolerance or the driving range implausible a fault is recognized after approx. 1 second.
8	i	The gear ratios are calculated from the following values: rpm signal n2, rpm signal n3 and output shaft rpm (via rear wheel rpm). Faults are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code 051).

≥28		Command valve binds in pressure position
1	OBD trouble code	00r09
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Calculated transmission ratios outside tolerance
5	Permissible ratios	1.986 - 2.389 2nd gear 1.355 - 1.455 3rd gear 0.970 - 1.030 4th gear 0.476 - 0.536 5th gear (calculated value) 1.726 - 2.126 reverse gear < 2 seconds
6	Prerequisite for test	 Engine speed > 400 rpm Output shaft speed > 150 rpm (> approx. 20 km/h)
7	Test sequence	After each gear change process the shift pressure is slowly reduced. If shift components slip during pressure reduction, the command valve binds in the pressure position. Slipping shift components are recognized on the respective transmission ratio.
8	i	The gear ratios are calculated from the following values: rpm signal n2, rpm signal n3 and output shaft rpm (via rear wheel rpm). Faults are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code [152]).

≥29		ETC control module
1	OBD trouble code	20102
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Failure in ETC control module - CAN communication - Impermissible version coding - Internal memory (RAM, ROM, EEPROM)
5	i	 Faults are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory, see Diagnostic Manual, Chassis and Drivetrain (Failure code 056, 058, 059, 062, 063, 064).

≥30		Voltage supply to transmission solenoid valves
1	OBD trouble code	20109
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Voltage supply to transmission solenoid valves
5	Lower threshold value Upper threshold value	< battery voltage - 2 V (longer than approx. 0.1 seconds) > battery voltage + 2 V (longer than approx. 0.1 seconds)
6	Test sequence	The solenoid values are supplied with battery voltage by the ETC control module. The difference between battery voltage and supply voltage to the solenoid values is monitored by the ETC control module.
7	i	Faults are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code []1]).

≥31		Voltage supply and function of RPM sensors
1	OBD trouble code	PD1IS
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	 voltage supply for RPM sensors RPM signal n2 RPM signal n3
5	Voltage supply for RPM sensors Lower threshold value Upper threshold value RPM signal n2, n3 Test duration	< approx. 4.8 V > approx. 7.2 V Signals recognized and plausible < 1 second
6	Prerequisite for test RPM signal n2 Prerequisite for test RPM signal n3	 Engine speed > 450 rpm Right rear wheel revolutions > 250 rpm Left rear wheel revolutions > 250 rpm 3rd or 4th gear recognized Output shaft revolutions > 150 rpm (> approx. 20 km/h) No transmission range change
7	Test sequence	Starting at a certain engine and wheel rpm the RPM signals must be recognized. For the RPM signal n3, the 3rd or 4th gear must be engaged additionally.
8	i	Faults are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code III, II2, II3).

≥32		Fault recognition CAN: Left rear and right rear wheel rpm (from ESP) implausible or communication interrupted
1	OBD trouble code	05C09
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	The ETC control module monitors the wheel rpm signal from the EPS control module via CAN data bus for plausibility.
5	Test duration	< 1 second
6	i	Faults are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code [222, [123, [130]).

≥33		Transmission range comparison (repeatedly) negative
1	OBD trouble code	P0730
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Comparison of recognized gear and engaged gear (calculated gear ratio) at least 6x negative.
5	Prerequisite for test	 2nd, 3rd, 4th or 5th gear recognized Engine speed > 400 rpm Output shaft revolutions > 150 rpm No transmission range change
6	i	The gear ratios are calculated from the following values: rpm signal n2, rpm signal n3 and output shaft rpm (via rear wheel rpm). Faults are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code 055).

≥34		Torque converter lock-up clutch
1	OBD trouble code	PD74D
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Friction coefficient of torque converter lock-up clutch
5	Test sequence	With the torque converter lock-up clutch engaged the friction coefficient is calculated via rpm comparisons. If it is several times out of tolerance a fault is recognized.
6	i	Faults are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code []53).

≥35		PWM solenoid valve, torque converter lock-up
1	OBD trouble code	РОТЧЭ
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	On-off ratio for activation of PWM solenoid valve
5	Lower threshold value Upper threshold value	< 5% >94%
	Test duration	< 1 second
6	i	Faults (open and short circuits) are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code 005).

≥36		Modulating pressure regulating solenoid valve
1	OBD trouble code	PD748
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Activation of modulating pressure regulating solenoid valve, modulation pressure
5	Threshold values Short circuit to ground Lower threshold value, voltage Upper threshold value, voltage Lower threshold value, current Upper threshold value, current Test duration	< 0.4 V approx. 8.5 V approx. 15 V approx. 0.300 A approx. 0.700 A approx. 1 second
6	i	Faults (activation, open and short circuits, short circuit in valve) are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code DDE).

≥37		Shift pressure regulating solenoid valve
1	OBD trouble code	PD748
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Activation of shift pressure regulating solenoid valve, shift pressure
5	Threshold values Short circuit to ground Lower threshold value, voltage Upper threshold value, voltage Lower threshold value, current Upper threshold value, current Test duration	< 0.4 V approx. 8.5 V approx. 15 V approx. 0.300 A approx. 0.700 A approx. 1 second
6	i	Faults (activation, open and short circuits, short circuit in valve) are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code []]]).

≥38		1-2/4-5 shift solenoid valve
1	OBD trouble code	PD753
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Voltage supply
5	Threshold values Short circuit to ground Lower threshold value, voltage Upper threshold value, voltage Lower threshold value, current Upper threshold value, current Test duration	< 0.4 V approx. 8.5 V approx. 15 V approx. 0.300 A approx. 0.700 A approx. 1 second
6	i	Faults (activation, open and short circuits, short circuit in valve) are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code III2).

≥39		2-3 shift solenoid valve
1	OBD trouble code	P0758
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Voltage supply
5	Threshold values Short to ground Lower threshold value, voltage Upper threshold value, voltage Lower threshold value, current Upper threshold value, current Test duration	< 0.4 V approx. 8.5 V approx. 15 V approx. 0.300 A approx. 0.700 A approx. 1 second
6	i	Faults (activation, open and short circuits, short circuit in valve) are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory (Failure code [1]]).

≥40		3-4 shift solenoid valve
1	OBD trouble code	PD763
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Voltage supply
5	Threshold values Short to ground Lower threshold value, voltage Upper threshold value, voltage Lower threshold value, current Upper threshold value, current Test duration	< 0.4 V approx. 8.5 V approx. 15 V approx. 0.300 A approx. 0.700 A approx. 1 second
6	i	Faults (activation, open and short circuits, short circuit in valve) are recognized by the ETC control module and transmitted via the CAN data bus to the engine control module. Fault storage and activation of the CHECK ENGINE MIL is accomplished by the engine control module. Additionally read ETC control module DTC memory.

≥41		Knock sensor control in engine control module (N3/10) hardware failure
1	OBD trouble code	P1385 for right cylinder bank P1589 for left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Each time the knock sensor control is turned off
4	Checked signal or condition	Internal hardware test of knock sensor control
5	Prerequisite for test	 Engine at operating temperature Load diminishes (knock sensor control shut-off)
6	i	Failure must occur at least 10 times

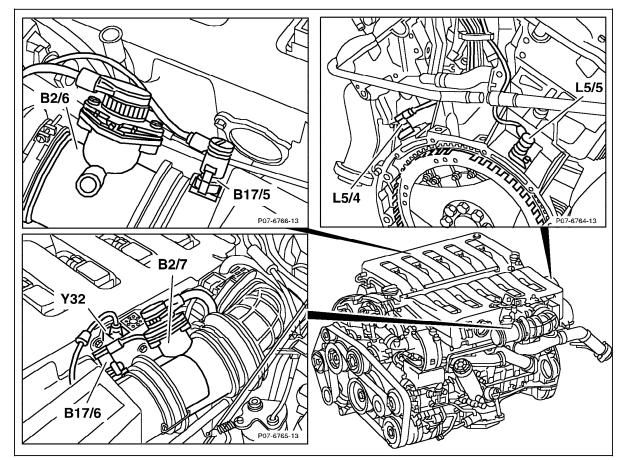
≥42		AIR injection
1	OBD trouble code	PIY20 AIR pump switchover valve (Y32) PIY53 AIR relay module (K17)
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	The voltage supply of the AIR relay module (K17) and AIR pump switchover valve (Y32) is evaluated via a current measurement in the respective end stage.
5	Lower threshold value Upper threshold value	approx. 3 V approx. 9 V
6	Prerequisite for test	- AIR injection operating

≥43		Adjustable camshaft timing solenoid (logic chain)
1	OBD trouble code	PISI3 Right cylinder bank PIS22 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	Failure storage after two consecutive trips with fault No activation of CHECK ENGINE MIL
3	Monitoring time and frequency of test	Once per trip
4	Checked signal or condition	Intake MAP sensor signal
5	Fault	Pressure changes by less than approx. 20 mbar.
	Test duration	< 10 seconds
6	Prerequisite for test	 Deceleration shut-off activated Engine speed approx. 1000 – 1500 rpm Engine at operating temperature No fault at adjustable camshaft timing solenoid voltage supply
7	Test sequence	With the start of the logic chain the momentary intake manifold pressure is determined after approx. 1 second. Subsequently the adjustable camshaft timing solenoids are activated for approx. 2 seconds and the intake manifold pressure is further evaluated for approx. 6 seconds. A failure is recognized, if the intake manifold pressure does not change by at least approx. 20 mbar when the camshaft is adjusted from "advanced" to "retarded" or vice versa.
8	i	If a prerequisite changes during the test, the test is interrupted and restarted later.

≥44		Adjustable camshaft timing solenoid
1	OBD trouble code	PI525 Right cylinder bank PI533 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Voltage or current at respective adjustable camshaft timing solenoid
5	Threshold values Short circuit to ground Short circuit to approx. 12 V Open circuit	Voltage < 4 V Current > approx. 4.2 A No voltage (approx. 4 V – 8 V)
6	Prerequisite for test	- Camshaft adjustment activated

≥45		Pedal value sensor (B37)
1	OBD trouble code	P1542
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Comparison of nominal value potentiometer 1 and 2 voltage signals
5	Difference at idle Difference at full load	< approx. 8% < approx. 25%
	Plausibility	Comparison of nominal value potentiometer 1 and 2 voltage signals to air mass
	Test duration	< 1 second
6	i	For comparison multiply the nominal value potentiometer 2 voltage signal by 2, because the supply voltage is only 2.5 V instead of 5.0 V.
		A turning angle up to approx. 10% is defined as CTP, full load as of a turning angle as of approx. 55%. At the idle speed stop a high ohm reading is permissible for a brief period.

≥46		EA/CC/ISC actuator (M16/1)
1	OBD trouble code	PI580 Right cylinder bank PI581 Left cylinder bank
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Voltage comparison of actual value potentiometer 1 and actual value potentiometer 2
5	Plausibility	 Voltage difference can correspond to maximum 1° throttle valve angle Comparison from throttle valve angle to air mass and pedal value sensor position

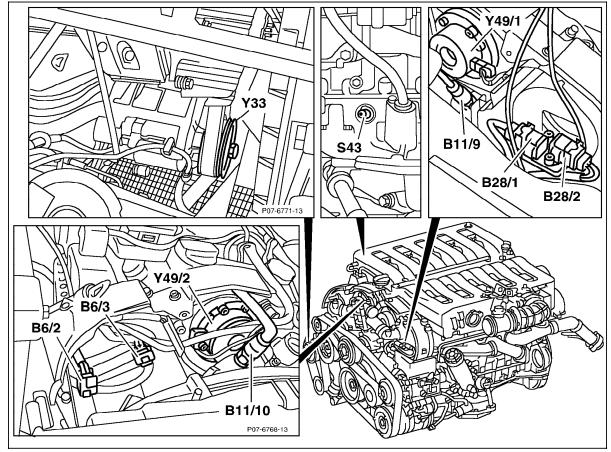

≥47		Body acceleration sensor (B24) only until 06/96
1	OBD trouble code	P1605
2	Storage of DTC and activation of CHECK ENGINE MIL	After two consecutive trips with fault
3	Monitoring time and frequency of test	Continuously
4	Checked signal or condition	Threshold values of body acceleration sensor signal
5	Lower threshold value Upper threshold value	approx. 0.1 V approx. 4.9 V
	Acceleration	> approx. 3.4 m/s ²
	Test duration	< 5 seconds
6	Prerequisite for test	 Vehicle stationary Delay time of approx. 2 seconds elapsed

Electrical Test Program – Component Locations

Components on engine Model 129

- B2/6 Left hot film MAF sensor (located on right side of engine)
- B2/7 Right hot film MAF sensor (located on left side of engine)
- B17/5 Left IAT sensor (located in engine compartment, right hand side)
- B17/6 Right IAT sensor (located in engine compartment, left hand side)
- L5/4 Left CKP sensor
- L5/5 Right CKP sensor
- Y32 AIR pump switchover valve

P07.61-2052-06

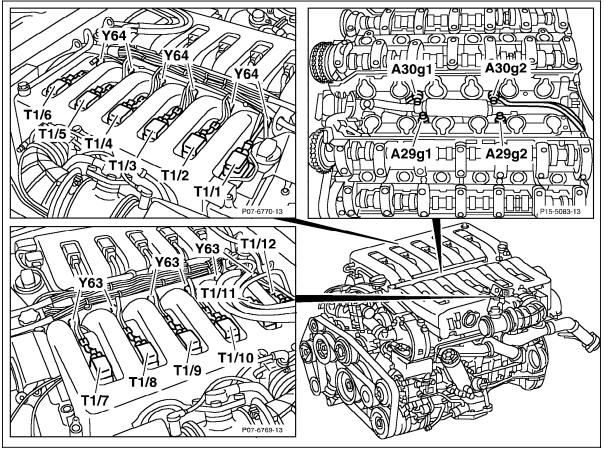

Engine 120

Electrical Test Program – Component Locations

Components on engine Model 129

Figure 2

- B6/2 Left camshaft Hall-effect sensor
- B6/3 Right camshaft Hall-effect sensor
- B11/9 Left ECT sensor
- B11/10 Right ECT sensor
- B28/1 Left pressure sensor (only USA)
- B28/2 Right pressure sensor (only USA)
- S43 Oil level switch
- Y33 Electromagnetic AIR pump clutch
- Y49/1 Left adjustable camshaft timing solenoid
- Y49/2 Right adjustable camshaft timing solenoid

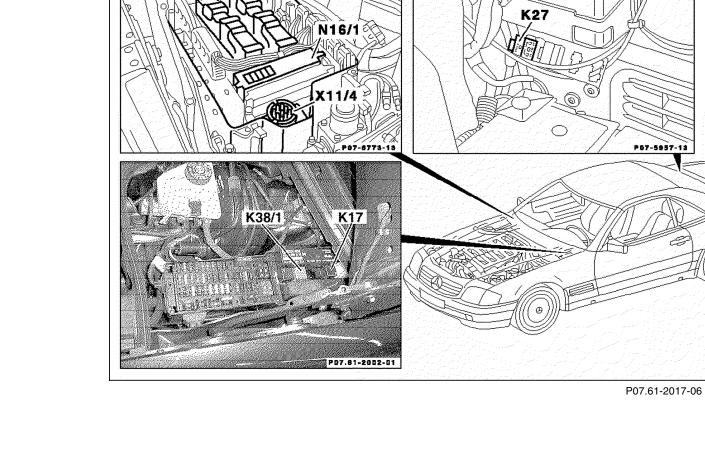

P07.61-2054-06

Electrical Test Program – Component Locations

Components on engine Model 129

Figure 3

A29g1	Left knock sensor 1
A29g2	Left knock sensor 2
A30g1	Right knock sensor 1
A30g2	Right knock sensor 2
T1/1	Ignition coil cylinder 1
T1/2	Ignition coil cylinder 2
T1/3	Ignition coil cylinder 3
T1/4	Ignition coil cylinder 4
T1/5	Ignition coil cylinder 5
T1/6	Ignition coil cylinder 6
T1/7	Ignition coil cylinder 7
T1/8	Ignition coil cylinder 8
T1/9	Ignition coil cylinder 9
T1/10	Ignition coil cylinder 10
T1/11	Ignition coil cylinder 11
T1/12	Ignition coil cylinder 12
Y63	Left injectors
Y64	Right injectors


P07.61-2053-06

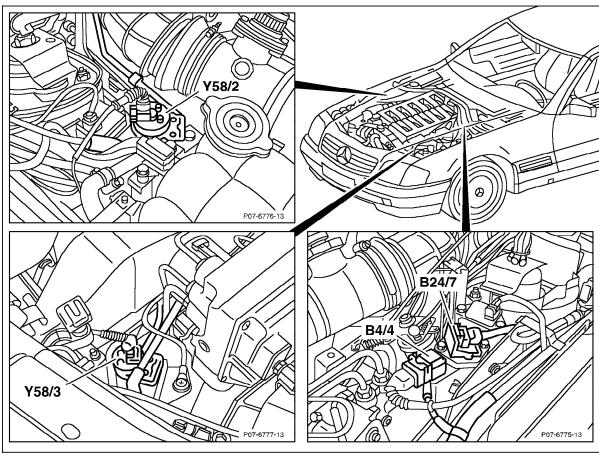
Electrical Test Program – Component Locations

Engine Compartment Model 129

- F23/1 Control module box
- K17 AIR relay module
- FP relay module K27
- Starter lock-out relay module K38/1
- Left engine control module (ME-SFI) N3/11
- Right engine control module (ME-SFI) N3/12
- Base module N16/1
- Data link connector (DTC readout) X11/4

N3/11

F23/1

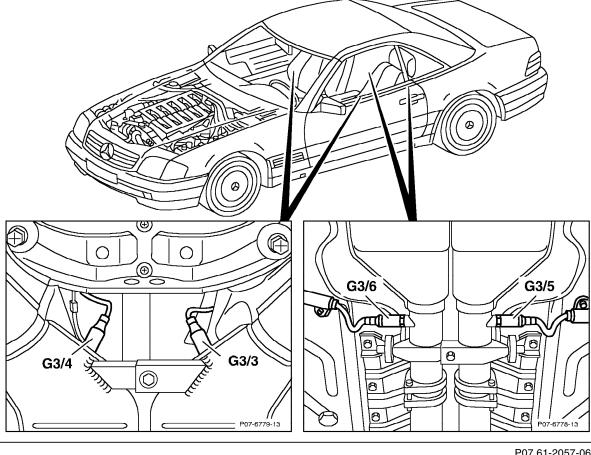

എ

N3/12

میں ا

Electrical Test Program – Component Locations

Engine Compartment Model 129

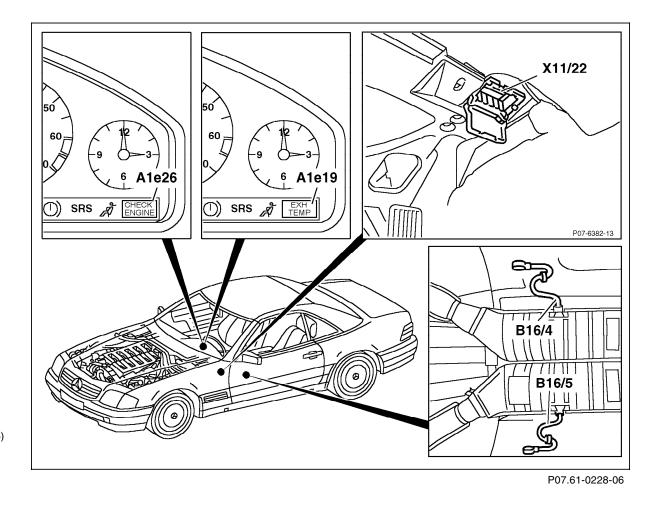

Figure 5

- B4/4 Purge control pressure sensor (only USA), up to 08/97)
- B24/7 Body acceleration sensor (only up to 05/97)
- Y58/2 Left purge control valve (located in engine compartment, right hand side)
- Y58/3 Right purge control valve (located in engine compartment, left hand side)

Electrical Test Program – Component Locations

Engine Compartment Model 129

Figure 6


- Left O2S 1 (before TWC) G3/3
- Right O2S 1 (before TWC) G3/4 G3/5
- Left O2S 2 (after TWC) (only USA)
- Right O2S 2 (after TWC) (only USA) G3/6

Engine 120

Electrical Test Program – Component Locations

Engine Compartment Model 129

Figure 7

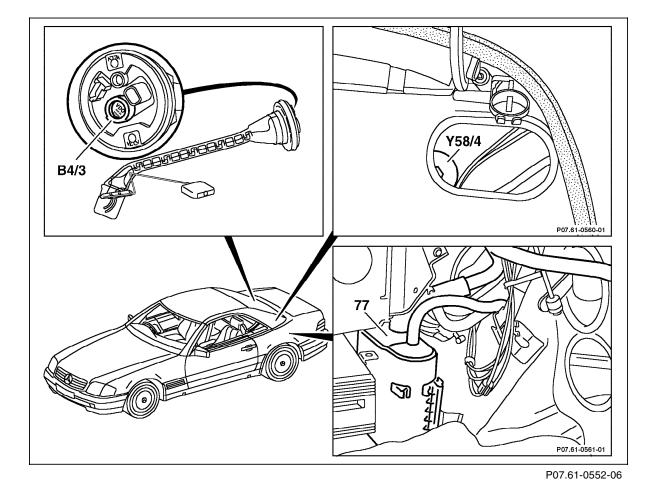
A1e19 Catalytic converter overheat warning lamp (U up to

05/96)

A1e26 "CHECK ENGINE" MIL (only USA)

B16/4 Left exhaust gas temperature sensor (J up to 05/96)

B16/5 Right exhaust gas temperature sensor (up to 05/96)


X11/22 Diagnostic module (OBD II) generic scan tool connector

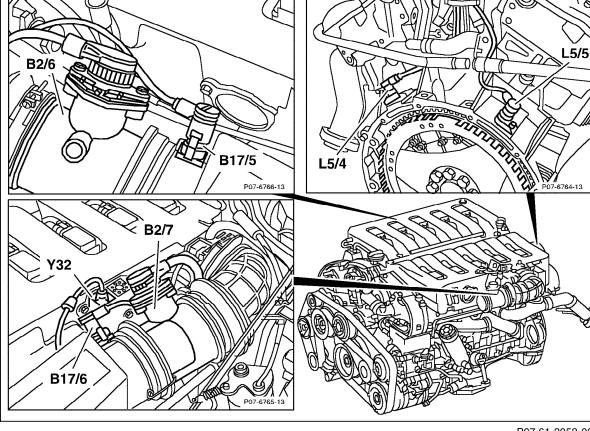
(only USA)

Engine 120

Electrical Test Program – Component Locations

Trunk Compartment Model 129

Figure 8


B4/3Fuel tank pressure sensor (only USA), as of 09/97)Y58/4Activated charcoal canister shut-off

valve (only USA), as of 09/97)

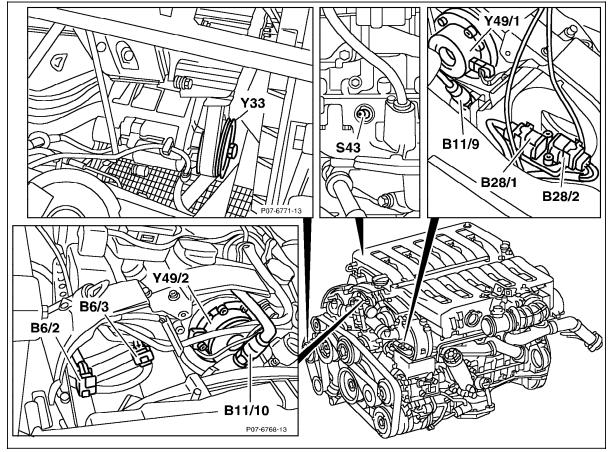
77 Activated charcoal canister

Electrical Test Program – Component Locations

Components on engine Model 140

Figure 9

- B2/6 Left hot film MAF sensor (located on right side of engine)
- B2/7 Right hot film MAF sensor (located on left side of engine)
- B17/5 Left IAT sensor
- (located in engine compartment, right hand side) B17/6 Right IAT sensor
- (located in engine compartment, left hand side) L5/4 Left CKP sensor
- L5/5 Right CKP sensor
- Y32 AIR pump switchover valve


Engine 120

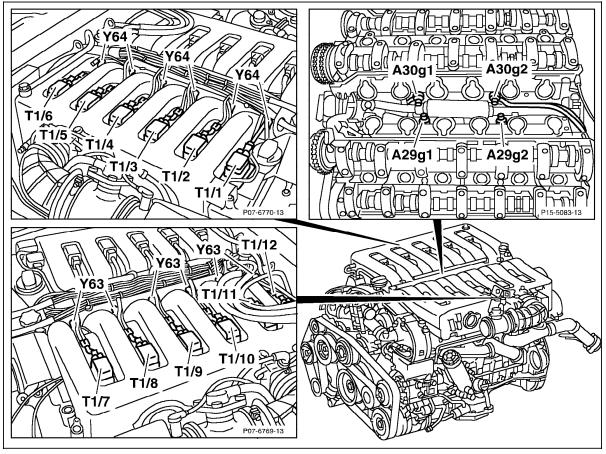
Electrical Test Program – Component Locations

Components on engine Model 140

Figure 10

- B6/2 Left camshaft Hall-effect sensor
- B6/3 Right camshaft Hall-effect sensor
- B11/9 Left ECT sensor
- B11/10 Right ECT sensor
- B28/1 Left pressure sensor (only USA)
- B28/2 Right pressure sensor (only USA)
- S43 Oil level switch
- Y33 Electromagnetic AIR pump clutch
- Y49/1 Left adjustable camshaft timing solenoid
- Y49/2 Right adjustable camshaft timing solenoid

P07.61-2054-06

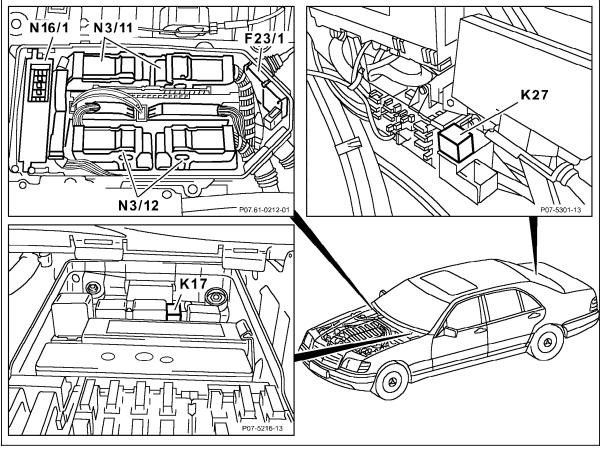

Engine 120

Electrical Test Program – Component Locations

Components on engine Model 140

Figure 11

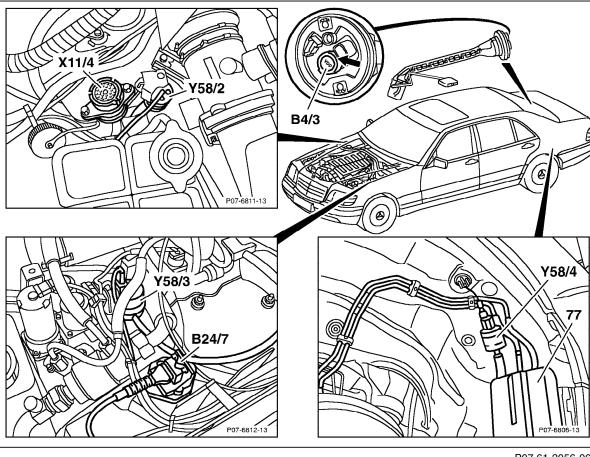
A29g1	Left knock sensor 1
A29g2	Left knock sensor 2
A30g1	Right knock sensor 1
A30g2	Right knock sensor 2
T1/1	Ignition coil cylinder 1
T1/2	Ignition coil cylinder 2
T1/3	Ignition coil cylinder 3
T1/4	Ignition coil cylinder 4
T1/5	Ignition coil cylinder 5
T1/6	Ignition coil cylinder 6
T1/7	Ignition coil cylinder 7
T1/8	Ignition coil cylinder 8
T1/9	Ignition coil cylinder 9
T1/10	Ignition coil cylinder 10
T1/11	Ignition coil cylinder 11
T1/12	Ignition coil cylinder 12
Y63	Left injectors
Y64	Right injectors


P07.61-2053-06

Electrical Test Program – Component Locations

Engine Compartment Model 140

- F23/1 Control module box
- K17 AIR relay module
- K27 FP relay module
- N3/11 Left engine control module (ME-SFI)
- N3/12 Right engine control module (ME-SFI)
- N16/1 Base module

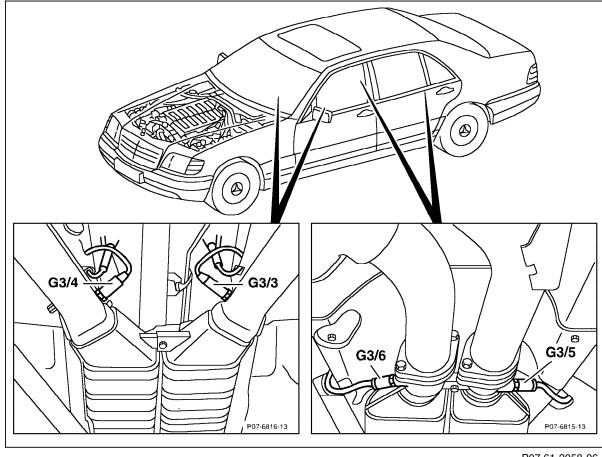


P07.61-0213-06

Engine 120

Electrical Test Program – Component Locations

Engine Compartment Model 140

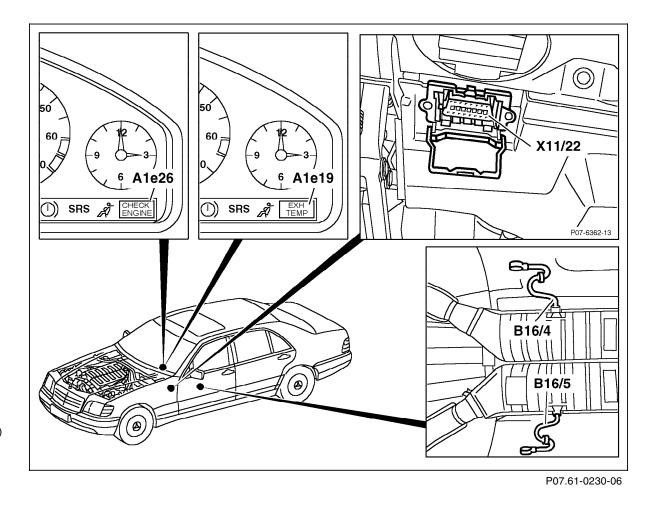

Figure 13

- Fuel tank pressure sensor (only USA) B4/3
- B24/7 Body acceleration sensor (only up to 05/96)
- X11/4 Data link connector
- Y58/2 Left purge control valve (located in engine compartment, right hand side)
- Y58/3 Right purge control valve (located in engine compartment, left hand side)
- Y58/4 Activated charcoal canister shut-off valve (only USA)
- 77 Active charcoal canister

Electrical Test Program – Component Locations

Engine Compartment Model 140

Figure 14


- Left O2S 1 (before TWC) G3/3 Right O2S 1 (before TWC) G3/4
- Left O2S 2 (after TWC) (only USA) G3/5
- Right O2S 2 (after TWC) (only USA) G3/6

Engine 120

Electrical Test Program – Component Locations

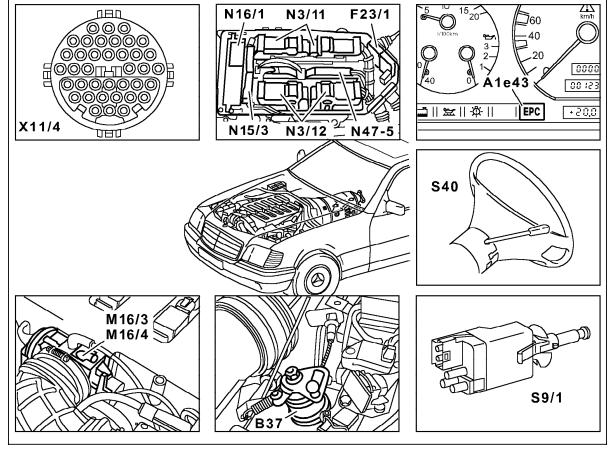
Engine Compartment Model 140

Figure 15

A1e19 Catalytic converter overheat warning lamp (J up to 05/96) A1e26 "CHECK ENGINE" MIL (only USA)

B16/4 Left exhaust gas temperature sensor (J up to 05/96)

B16/5 Right exhaust gas temperature sensor (J up to 05/96) X11/22 Diagnostic module (OBD II) generic scan tool connector (only USA)



Electrical Test Program – Component Locations

Model 140

- A1e43 EPC MIL (up to 05/96)
- B37 Pedal value sensor
- F23/1 Control module box
- M16/3 Right EA/CC/ISC actuator (located on left)
- M16/4 Left EA/CC/ISC actuator (located on right)
- N3/11 Left engine control module (ME-SFI)
- N3/12 Right engine control module (ME-SFI)
- N15/3 Transmission control module
- N16/1 Base module
- N47-5 ESP/SPS control module
- S9/1 Stop lamp switch
- S40 CC switch
 - V Decelerate/set
 - B Accelerate/set
 - SP Memory
 - A OFF
- X11/4 Data link connector (DTC readout)

P07.61-0214-06

Electrical Test Program – Preparation for Test

WARNING!

Risk of severe injury when touching ignition parts which produce high voltages. Do not touch ignition components. Persons with heart pacemakers are not to perform repairs on this type of ignition system.

- 1. Review 11, 21, 22, 23, 24, 31, 33, 35, 36,
- 2. Review section 0,
- 3. Connect HHT and readout DTC memory, see 11,
- 4. Ignition: OFF
- 5. Connect test cable with socket box to engine control module (N3/11) or engine control module (N3/12), see 22/5

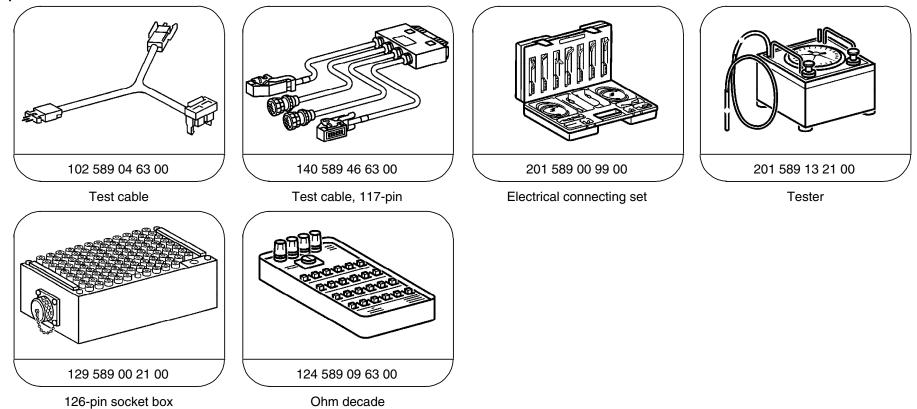
i

Connect interior harness connector to connection 1 on test cable. Connect engine harness connector to connection 2 on test cable.

Note:

The test program is divided into four sections:

- 23 SFI Test
- 24 Ignition System Test
- 25 EA System Test
- 26 CC System Test


Note regarding "Test Connection" column:

The numbers indicated in parentheses, for example, \Rightarrow 1.0 (2A) signify:

- 2 = Socket 2 on wiring diagram.
- A = Connector A on wiring diagram,

Electrical Test Program – Preparation for Test

Special Tools

Test Equipment; See MBUSA Standard Equipment Program

Description	Brand, model, etc.
Digital multimeter	Fluke models 23, 77 III, 83, 85, 87
Engine analyzer	Bear DACE Hermann Electronics


Electrical Test Program – Preparation for Test

WARNING!

Persons with heart pacemakers are not to perform repairs on this type of ignition system.

Electronic ignition systems produce dangerous high voltages on both the primary circuit and the secondary (ignition) circuits. Due to the high voltages produced, contact with any of the voltage carrying components can be dangerous to your health (burns, heart palpatations, cardiac arrest etc).

- Ignition must be turned OFF prior to performing any repair work on the ignition system.
- Do not come in contact or remove with any of the ignition components while the engine is cranking or idling.
- Wear rubber soled shoes.
- Disconnect connectors for CKP sensor at sensor or control module.
- If repairs require that the ignition be turned on, then dangerous voltages will be present through out the entire ignition system.
- No exposed metal connectors or sending units may be installed in the ignition wires.

P15.11-0001-01

To Avoid Damage to the Ignition System

- To avoid damage to the engine control module, connect/disconnect the control module connectors only with the ignition: **OFF**.
- Circuit 1 of the ignition coil may not be shorted to ground, e.g. theft deterence.
- Only original equipment should be installed in the ignition system.
- Do not operate the ignition system at cranking speed unless the entire igntion harness is connected.
- Do not perform any tests (grounding of ignition cable 4 disconnecting a spark plug connector or pulling cable 4 out of the ignition coil) at cranking or idle speed.
- The high output side of the ignition system must carry at least 2 kΩ of load (spark plug connector).

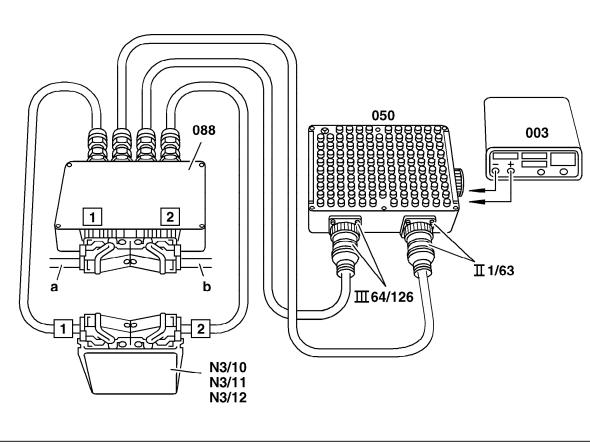
Using Test Equipment

- Connect the secondary voltage measuring equipment on the corresponding secondary ignition lead only when engine is stopped and ignition is OFF.
- If the circuit breaker is activated (power balance test), and the engine stalls, then the test procedure with this tester cannot be performed.
- Do not connect a test lamp to circuit 1 or 15 of the ignition coil.

- If assisting a disabled vehicle and it becomes necessary to perform an igntion spark test, perform this test only on one ignition/sark plug.
 Ensure a good ground connection to the spark plug.
- ME SFI: the ignition system is to be turned OFF, when cranking engine to perform compression tests, additionally, it is necessary to disconnect connector 2 from the control module.

LI Engine 120 has separate ignition and fuel injection system

Electrical Test Program – Preparation for Test


Connection Diagram - Socket Box

i

Connect interior harness connector to connection 1 on test cable. Connect engine harness connector to connection 2 on test cable.

Figure 1

003	Digital multimeter
050	Socket box (126-pole)
088	Test cable
а	Interior compartment harness
b	Engine compartment harness
N3/11	Left engine control module (ME-SFI)
N3/12	Right engine control module (ME-SFI)
III64/126	Connectors, socket box and test cable
ll163	Connectors, socket box and test cable

P07.61-2049-06

Electrical Test Program – Preparation for Test

Connector Layout - Engine Control Module Connector 1 – Interior

1	Stop lamp switch (S9/1) N.C. contact ²⁾
2	CC switch (S40), accelerate/set ²⁾
3	Stop lamp switch (S9/1) N.O. contact ²⁾
4	Pedal value sensor (B37) nominal value
	potentiometer 2 (+) 1)
5	-
6	Pedal value sensor (B37) nominal value
	potentiometer 2 (wiper) 1)
7	-
8	A/C pushbutton control module (N22) ²⁾
	(only until 05/96)
9	Left front axle VSS (L6/1) ²⁾
10	Purge control valve (Y58/3) ¹⁾ (Y58/2) ²⁾
11	"CHECK ENGINE" MIL (A1e26) (only USA)
	(only until 05/96, as of 06/96 via CAN)
12	O2S 2 (after TWC) heating (G3/5) ¹⁾ (G3/6) ²⁾
	(only USA)
13	O2S 1 (before TWC) heating (G3/3) $^{1)}$ (G3/4) $^{2)}$
14	Starter signal, circuit 50 (as of 06/98)
15	
16	CTP (idle) signal
17	Pedal value sensor (B37) nominal value
	potentiometer 1 (+) $^{2)}$
18	Pedal value sensor (B37) nominal value
-	potentiometer (–)
19	Pedal value sensor (B37) nominal value
	potentiometer 2 (wiper)
20	_
21	EPC MIL (A1e43) ²⁾
22	Left rear axle VSS (L6/3) ²⁾
23	
	Tank open signal ²⁾ (only until 05/96) (only (USA))
24	FP relay module (K27) ²⁾

25

26

27 28

29

30

31

32

33 34

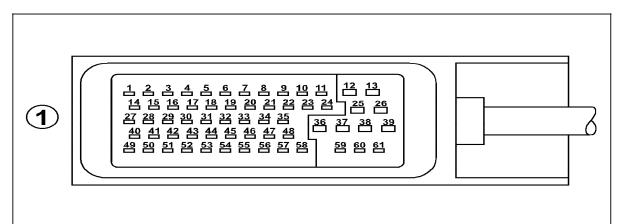
35

36

37

38

39


40

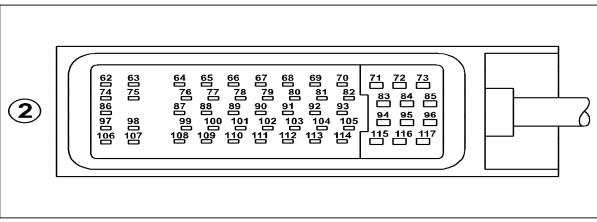
41

42

¹⁾ Left engine control module (N3/11) only

²⁾ Right engine control module (N3/12) only

Voltage supply, circuit 87M) Output ground (W15), right footwell CC switch (S40), control contact ²⁾ CC switch (S40), off ²⁾
CC switch (S40), resume ²⁾ CC switch (S40), decelerate/set ²⁾ Oil level switch (S43) ²⁾
Fuel reserve signal (only until 05/96, as of 06/96 via CAN)
Activated charcoal canister shut-off valve (Y58/4) (only USA) (model 140 and 129 as of 09/97)
Voltage supply, circuit 30 Voltage supply, circuit 87E, for EA function
Electronics ground (W15/1), right footwell Output ground (W15), right footwell O2S 1 (before TWC) ground (G3/3) ¹⁾ (G3/4) ²⁾ O2S 1 (before TWC) signal (G3/3) ¹⁾ (G3/4) ²⁾
O2S 2 (after TWC) signal (G3/5) ¹) (G3/6) ²) (only


43	-
44	Body acceleration sensor (B24) and fuel tank pressure sensor (B4/3), 5V voltage supply
45	Ground (W15/1) coding ¹⁾
46–47	-
48 49–50	Body acceleration sensor (B24), signal ²⁾
51	Purge monitoring pressure sensor (B4/4) ²⁾ , model 129 up to 08/97, (only USA)
	Fuel tank pressure sensor (B4/3), model 140,
	model 129 as of 09/97, (only \overline{USA}) $^{2)}$
52	-
53	Ground, sensors ²⁾
54	-
55	Diagnosis output (injection system), DLC (X11/4)
56	Diagnosis output, (engine speed) DLC (X11/4) 2)
57	AIR relay module (K17) ²⁾
58	Instrument cluster (fuel consumption signal) ²⁾
59	-
60	CAN data line "H"
61	CAN data line "L"

P07.61-0575-10

Electrical Test Program – Preparation for Test

Connector Layout - Engine Control Module Connector 2 – Engine compartment

IAT sensor (+) (B17/6) 1) (B17/5) 2)

P07.61-2048-10

68	Hot film MAF sensor (–) (B2/6) ¹⁾ (B2/7) ²⁾	85
69	Injector (Y63y10) ¹⁾ (Y64y4) ²⁾	86
70	Injector (Y63y8) ¹⁾ (Y64y2) ²⁾	87
71	Injector (Y63y11) ¹⁾ (Y64y5) ²⁾	
72	Injector (Y63y7) ¹⁾ (Y64y1) ²⁾	
73	Ground bridge to pin 96	88
74	EA/CC/ISC actuator (-) (M16/4) ¹⁾ (M16/3) ²⁾	
75	EA/CC/ISC actuator (+) (M16/4) ¹⁾ (M16/3) ²⁾	89
76	ECT sensor (+) (B11/9) ¹⁾ (B11/10) ²⁾	90
77	-	91
78	CKP sensor (-) (L5/4) ¹⁾ (L5/5) ²⁾	92
79	Front KS 1 (+) (A29g1) ¹⁾ (A30g1) ²⁾	93
80	Front KS 1 (–) (A29g1) ¹⁾ (A30g1) ²⁾	94
		95
1)	Left engine control module (N3/11) only	96
2)	Right engine control module (N3/12) only	

Pressure sensor (B28/1) ¹) (B28/2) ²) (only USA)

Camshaft Hall-effect sensor (B6/2) 1) (B6/3) 2)

Hot film MAF sensor (+) (B2/6) 1) (B2/7) 2)

81	Oil temperature sensor (Model 129 only, as of 06/98)
82	Injector (Y63y12) ¹⁾ (Y64y6) ²⁾
83	Ignition coil $(T1/7)^{(1)} (T1/1)^{(2)}$
84	Ignition coil $(T1/11)^{1}$ $(T1/5)^{2}$
85	Ignition coil $(T1/9)^{(1)} (T1/3)^{(2)}$
86	_
87	Ground: IAT sensor, Intake MAP sensor, Camshaft
	Hall-effect sensor, ECT sensor (only USA)
88	Pressure sensor, 5V voltage supply (B28/1) 1)
	(B28/2) ²⁾ (only USA)
89	CKP sensor (+) (L5/4) ¹⁾ (L5/5) ²⁾
90	Rear KS 2 (+) (A29g2) ¹⁾ (A30g2) ²⁾
91	Rear KS 2 (-) (A29g2) ¹⁾ (A30g2) ²⁾
92	-
93	Injector (Y63y9) ¹⁾ (Y64y3) ²⁾
94	Ignition coil (T1/8) ¹⁾ (T1/2) ²⁾ (–)
95	Ignition coil (T1/12) ¹⁾ (T1/6) ²⁾ (–)
96	Ground bridge to pin 73

97	EA/CC/ISC actuator, actual value potentiometer (wiper) (M16/4r1) $^{1)}$ (M16/3r1) $^{2)}$
98	EA/CC/ISC actuator, actual value potentiometer (–) (M16/4r1–r2) ¹⁾ (M16/3r1–r2) ²⁾
99 - 103	_
104	Starter relay module (as of 06/98)
105	-
106	EA/CC/ISC actuator, actual value potentiometer
	(+) (M16/4r1-r2) ¹) (M16/3r1-r2) ²)
107	EA/CC/ISC actuator, actual value potentiometer (wiper) (M16/4r2) ¹⁾ (M16/3r2) ²⁾
108-112	_
113	Adjustable camshaft timing solenoid (Y49/1) ¹⁾ (Y49/2) ²⁾
114	AIR pump switchover valve (Y32)
115	Ignition coil (T1/10) ¹⁾ (T1/4) ²⁾ (–)
116-117	-

62 - 63

64

65

66

67

_

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
1.0	PO 560 PI 587	Engine control module (ME-SFI) (N3/11 or N3/12) Voltage supply Circuit 30	N3/11 N3/12 		11 – 14 V	⇒ 1.1
1.1		Ground wire	N3/11 N3/12 (1.26) X11/ 26 - (- $()^+$) - 2 (1.26) 39 - (- $()^+$) - 2 (1.39)	2	11 – 14 V	Wiring, Model 129: Ground (W27), module box bracket. Model 140: Output ground (W15), right footwell. $\Rightarrow 1.2$
1.2		Voltage supply Circuit 30	N3/11 N3/12 X11/4 $()$ 1 - $(- ()^+)$ 34 (1.35)		11 – 14 V	Wiring, Base moduel (N16/1) or fuse on base module.

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
2.0	PO 560 PI 587	Engine control module (ME-SFI) (N3/11 or N3/12) Voltage supply Circuit 87L	N3/11 N3/12 38 - (-) - 24 (1.38) (1.24)	Ignition: ON	11 – 14 V	⇒ 2.1
2.1		Electronics ground	N3/11 N3/12 38 - (-) - 2 (1.38)	Ignition: ON	11 – 14 V	Wiring, Model 129, 140: Electronics ground (W15/1), right footwell. \Rightarrow 2.2
2.2		Voltage supply Circuit 87L	N3/11 N3/12 X11/4 (1.24)	Ignition: ON Ignition: OFF	11 – 14 V < 1 V	Wiring, Base module (N16/1) or fuse on base module, Ignition/starter switch (S2/1)
3.0	PO 560 PI 587	Engine control module (ME-SFI) (N3/11 or N3/12) Voltage supply Circuit 87M1e	N3/11 N3/12 39 - (-) - 36 (1.39) (1.36)	Ignition: ON Ignition: OFF	11 – 14 V < 1 V	Wiring.

Electrical Test Program – Test

\Rightarrow		Test scope	Test connection		Test condition	Nominal value	Possible cause/Remedy
4.0	P0 100 P1 146	Left hot film MAF sensor (B2/6) Right hot film MAF sensor (B2/7) Voltage at hot film	N3/11 N3/12 68 C (2.68) C (2.68) C (2.68)) — 67 (2.67)	Ignition: ON Engine: at Idle Engine coolant temperature >70°C	0.6 – 0.9 V ¹⁾	Wiring \Rightarrow 4.1, Air intake system leak, B2/6 or B2/7
4.1		Ground wire for hot film MAF sensor (B2/6 or B2/7)	N3/11 N3/12 ∭∰ 38 - C) — 67 (2.67)	Ignition: OFF Disconnect MAF sensor (B2/6 or B2/7) connector. Bridge sockets 1 and 4	< 1 Ω	Ground wire.
5.0	P0 105 P1 149	Left pressure sensor (B28/1) Right pressure sensor (B28/2) Sender signal (only USA)	N3/11 N3/12 ∭∰ 87 - (- (♥) + (2.87)	► 65 (2.65)	Connect vacuum tester to pressure sensor (B28/1 or B28/2) using Y-fitting (see 21) Ignition: ON Engine: at Idle	 > 3.5 V < 2 V and pressure climbs to > 500 mbar. 	Vacuum line, Wiring, ⇒ 5.1 B28/1 or B28/2

¹⁾ Voltage increases with increasing rpm.

\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
5.1	Pressure sensor (B28/1 or B28/2) Voltage supply	N3/11 N3/12 87 (() 88 (2.87) (2.88)	Ignition: ON	4.7 – 5.3 V	N3/11 or N3/12
6.0	Right engine control module (N3/12) only FP relay module (K27) Activation	N3/12 24 (() +- 25 (1.24) (1.25)	Ignition: ON Engine: Start	11 – 14 V for approx. 1 sec. 11 – 14 V during cranking and while engine runs.	⇒ 6.1, N3/12
6.1	Current draw (K27)	N3/12 26 - (-) - 24 (1.26) (1.24)	Ignition: ON	0.1 – 0.3 A	Wiring, K27

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
7.0	P0 115 P1 147	Left ECT sensor (B11/9) Right ECT sensor (B11/10) Voltage	N3/11 N3/12 	Ignition: ON	$ \begin{array}{cccc} ^{\circ}\text{C} & \text{V} \\ 20 & 3.5 \\ 30 & 3.1 \\ 40 & 2.7 \\ 50 & 2.3 \\ 60 & 1.9 \\ 70 & 1.5 \\ 80 & 1.2 \\ 90 & 1.0 \\ 100 & 0.8 \\ \pm 5 \% \end{array} $	⇒ 7.1, N3/11 or N3/12
7.1		Resistance	N3/11 N3/12 87 - (- ① +)- 76 (2.87) (2.76)	Ignition: OFF Disconnect connector 2 on engine control module (N3/11 or N3/12).	$ \begin{array}{cccc} ^{\circ} C & \Omega \\ 20 & 2500 \\ 30 & 1700 \\ 40 & 1170 \\ 50 & 830 \\ 60 & 600 \\ 70 & 435 \\ 80 & 325 \\ 90 & 245 \\ 100 & 185 \\ \pm 5 \% \end{array} $	Wiring, \Rightarrow 7.2
7.2		ECT sensor (B11/9 or B11/10) Resistance	B11/9 B11/10 1 - © ⁺ → 4	Disconnect connector on ECT sensor (B11/9 or B11/10).	Nominal value, see \Rightarrow 7.1	B11/9 or B11/10

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
8.0	P0 110 P1 148	Left IAT sensor (B17/5) Right IAT sensor (B17/6) Voltage	N3/11 N3/12 ∭∰ 87 (() ⁺ -) 64 (2.87) (2.64)	Ignition: ON	$ \begin{array}{cccc} ^{\circ}\text{C} & \text{V} \\ 10 & 3.2 \\ 20 & 2.6 \\ 30 & 2.1 \\ 40 & 1.6 \\ 50 & 1.2 \\ 60 & 0.9 \\ 70 & 0.7 \\ \pm 5 \% \end{array} $	⇒ 8.1, N3/11 or N3/12
8.1		Resistance (B17/5 or B17/6)	N3/11 N3/12 ∭∰ 87 - (- @ + → 64 (2.87) (2.64)	Ignition: OFF Disconnect connector 2 on engine control module (N3/11 or N3/12).	$ \begin{array}{cccc} & \Omega \\ 10 & 9670 \\ 20 & 6060 \\ 30 & 3900 \\ 40 & 2600 \\ 50 & 1760 \\ 60 & 1220 \\ 70 & 860 \\ & \pm 5 \% \end{array} $	Wiring, \Rightarrow 8.2
8.2		IAT sensor (B17/5 or B17/6) Resistance	B17/5 B17/6 1 → ② → 2	Disconnect connector from IAT sensor (B17/5 or B17/6).	Nominal value, see \Rightarrow 8.1	B17/5 or B17/6

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
9.0		Right engine control module (N3/12) only TN-signal output	N3/12 38 - ← - ⊕ + → → → → → → → → → → → → → → → → → →		Signal: see Figure 2.	Wiring, N3/12
			N3/12 38 (() +-) (1.38) (1.4)		5 – 7.5 V	
10.0	PD 130 PD 133 PD 140 PD 150 PD 153 PD 153	Left O2S 1 (before TWC) (G3/3) Right O2S 1 (before TWC) (G3/4) O2S signal	N3/11 N3/12 (1.40) N3/12		fluctuates from – 0.2 V to + 1.0 V, by more than 0.3 V	Wiring, G3/3 or G3/4, \Rightarrow 11.0
11.0	PD 135 PD 155	Left O2S 1 (before TWC) (G3/3) Right O2S 1 (before TWC) (G3/4) O2S heater activation	N3/11 N3/12 13		11 – 14 V	⇒ 11.1, N3/11 or N3/12
11.1		O2S 1 (G3/3 or G3/4) Current draw	N3/11 N3/12 26 (()+-)- (1.26) (1.		0.6 – 3.4 A	Wiring, G3/3 or G3/4

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
12.0.	P0 136 P0 156	Left O2S 2 (afterTWC) (G3/5) Right O2S 2 (afterTWC) (G3/6) O2S signal (only (USA))	N3/11 N3/12 40 - 40 - 42 (1.40) (1.42)	ECT > 80° C, Engine: Start Raise and hold engine speed at 2000 – 3000 rpm for approx. two minutes until O2S 2 heater turns on (see HHT).	The range of 450mV to 550mV, must be attained or not attained within 1 minute.	Wiring, \Rightarrow 13.0
13.0	PD 141 PD 161	Left O2S 2 (after TWC) (G3/5) Right O2S 2 (after TWC) (G3/6) O2S heater activation (only (USA))	N3/11 N3/12 12 - (-) - 25 (1.12) (1.25)	Engine: at Idle ECT > 80° C, run engine at idle for at least two minutes.	11 – 14 V	⇒ 13.1, N3/11 or N3/12
13.1		O2S 2 (G3/5 or G3/6) Current draw	N3/11 N3/12 26 - (-) - 12 (1.26) (1.12)	Ignition: ON	0.6 – 3.4 A	Wiring, G3/5 or G3/6

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
14.0	PD 201 PD 207	Injector (Y64y1, Y63y7) Activation and injection time	N3/11 N3/12 72 - (25) (2.72) (1.25)	at start: ECT approx. 80° C at idle: accelerate briefly:	Injection time: approx. 8 ms approx. 3 – 5 ms approx. 14 ms (signals see Figures 2 and 3)	 ⇒ 14.1, N3/11 or N3/12, Further possibilities: ECT sensor (B11/9 or B11/10), IAT sensor (B17/5 or B17/6), O2S 1 (G3/3 or G3/4).
14.1		Resistance	N3/11 N3/12 $72 - (- @^+) - 25$ (2.72) (1.25)	Ignition: OFF	14 – 17 Ω	Wiring, Y64y1, Y63y7

\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
15.0	Injector (Y64y2, Y63y8) Activation and injection time	N3/11 N3/12 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	at start: ECT approx. 80° C at idle: accelerate briefly:	Injection time: approx. 8 ms approx. 3 – 5 ms approx. 14 ms (signals see Figures 2 and 3)	 ⇒ 15.1, N3/11 or N3/12, Further possibilities: ECT sensor (B11/9 or B11/10), IAT sensor (B17/5 or B17/6), O2S 1 (G3/3 or G3/4).
15.1	Resistance	N3/11 N3/12 $70 - (- 0)^+ - 25$ (2.70) (1.25)	Ignition: OFF	14 – 17 Ω	Wiring, Y64y2, Y63y8

\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
16.0	Injector (Y64y3, Y63y9) Activation and injection time	N3/11 N3/12 93 - ((⊕ + -) - 25 (2.93) (1.25)	at start: ECT approx. 80° C	Injection time: approx. 8 ms approx. 3 – 5 ms approx. 14 ms (signals see Figures 2 and 3)	 ⇒ 16.1, N3/11 or N3/12, Further possibilities: ECT sensor (B11/9 or B11/10), IAT sensor (B17/5 or B17/6), O2S 1 (G3/3 or G3/4).
16.1	Resistance	N3/11 N3/12 93 - ← - ② + → 25 (2.93) (1.25)		14 – 17 Ω	Wiring, Y64y3, Y63y9

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
17.0	P0 204 P0 210	Injector (Y64y4, Y63y10) Activation and injection time	N3/11 N3/12 (2.69) → 25 (2.69) (1.25)	at start: ECT approx. 80° C	Injection time: approx. 8 ms approx. 3 – 5 ms approx. 14 ms (signals: see Figures 2 and 3).	⇒ 17.1, N3/11 or N3/12 Further possibilities: ECT sensor (B11/9 or B11/10), IAT sensor (B17/5 or B17/6), O2S 1 (G3/3 or G3/4).
17.1		Resistance (Y64y4 or Y63y10)	$\begin{array}{c} N3/11 \\ N3/12 \\ \hline \\ 69 - 4 \\ (2.69) \end{array} \xrightarrow{- @^+ } 25 \\ (2.69) \\ (1.25) \end{array}$	Ignition: OFF	14 – 17 Ω	Wiring, Y64y4 or Y63y10

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
18.0	PO 205 PO 211	Injector (Y64y5, Y63y11) Activation and injection time	$ \begin{array}{c} $	at start: ECT approx. 80° C	Injection time: approx. 8 ms approx. 3 – 5 ms approx. 14 ms (signals: see Figures 2 and 3).	 ⇒ 18.1, N3/11 or N3/12 Further possibilities: ECT sensor (B11/9 or B11/10), IAT sensor (B17/5 or B17/6), O2S 1 (G3/3 or G3/4).
18.1		Resistance (Y64y5 or Y63y11)	N3/11 N3/12 $71 - (- @^+) - 25$ (2.71) (1.25)	Ignition: OFF	14 – 17 Ω	Wiring, Y64y5, Y63y11

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
19.0	905 09 90 212	Injector (Y64y6, Y63y12) Activation and injection time	N3/11 N3/12 82 (() +- 25 (2.82) (1.25)	ECT approx. 80° C	(see Figures 2	 ⇒ 19.1, N3/11 or N3/12, Further possibilities: ECT sensor (B11/9 or B11/10), IAT sensor (B17/5 or B17/6), O2S 2 (G3/3 or G3/4).
19.1		Resistance (Y64y6 or Y63y12)	N3/11 N3/12 12 $82 - (- 0^+) - 25$ (2.82) (1.25)	Ignition: OFF	and 3) 14 – 17 Ω	Wiring, Y64y6, Y63y12
20.0	PD 410 P1 453 P1 463	Right engine control module (N3/12) AIR relay module (K17) Activation	N3/12 57 - (→) - 25 (1.57) (1.25)	Disconnect right ECT sensor (B11/10) connector. Simulate 2.5 k Ω resistance at sockets 1 and 4 with resistance substitution unit. Engine: at Idle	11 – 14 V for approx. two minutes and AIR pump runs.	⇒ 20.1, N3/12

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
20.1		Current draw (K17)	N3/12 38 - (- (▲) + → 57 (1.38) (1.57)		0.1 – 0.3 A	Wiring, K17
21.0	PD 410 P1 420 P1 463	Right engine control module (N3/12) AIR pump switchover valve (Y32) Activation	N3/12 114 - (- () - 25 (2.114) (1.25)	Disconnect right ECT sensor (B11/10) connector. Simulate 2.5 kΩ resistance at sockets 1 and 4 with resistance substitution unit. Engine: at Idle	11 – 14 V for approx. two minutes and AIR pump runs.	⇒ 21.1, N3/12
21.1		Current draw (Y32)	N3/12 38 - (- (A) +) - 114 (1.38) (2.114)		0.3 – 0.5 A	Wiring, Y32

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
22.0	PI 519 PI 522 PI 525 PI 533	Left adjustable camshaft timing solenoid (Y49/1) Right adjustable camshaft timing solenoid (Y49/2) Current draw	Y49/1 Y49/2 1 (→ ⁻)	Connect test cable (102 589 04 63 00) to solenoid. Engine: Start and increase engine speed to 3000 rpm.	approx. 1.0 A	\Rightarrow 22.1, \Rightarrow 23.0, N3/11 or N3/12.
22.1		Resistance Y49/1 or Y49/2	Y49/1 Y49/2 1 _ 	Ignition: OFF Unplug connector on left or right camshaft timing solenoid (Y49/1 or Y49/2).	7 – 12 Ω	Y49/1 or Y49/2
23.0	PI 519 PI 522 PI 525 PI 533	Left adjustable camshaft timing solenoid (Y49/1) Right adjustable camshaft timing solenoid (Y49/2) Mechanical function	N3/11 N3/12 113 - (-())- 3 (2.113) (1.3	Engine: at Idle B Bridge sockets on socket box for a maximum of 10 seconds only.	Engine runs rough after approx. 5 seconds.	Check function of camshaft adjuster (see SMS, Engine 120, Job No. 05-2160).

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
24.0	P0 441 P0 446 P0 443	Activation	N3/11 N3/12 10 (() 25 (1.10) (1.25)		After approx. 1 minute, purge control valve (Y58/2 or Y58/3) must noticeably cycle Signal (see Figure 4).	⇒ 24.1, ⇒ 25.0, N3/11 or N3/12
24.1		Current draw (y58/2 or Y58/3)	N3/11 N3/12 ∭∰ 38 - (- ⁻ (▲) ⁺ -)- 10 (1.38) (1.10)	Ignition: ON	0.1 – 0.3 A	Wiring, Y58/2 or Y58/3
25.0	P0 440 P0 441 P1 443	Purge control valve (Y58/2 or Y58/3) Vacuum control		Connect vacuum tester to purge control valve (Y58/2 or Y58/3) connector (A) (see 21). Engine at operating temperature and at idle, increase engine speed to maximum 3000 rpm	After approx. 1 minute, > 50 mbar and needle oscillates.	Vacuum line, Y58/2 or Y58/3

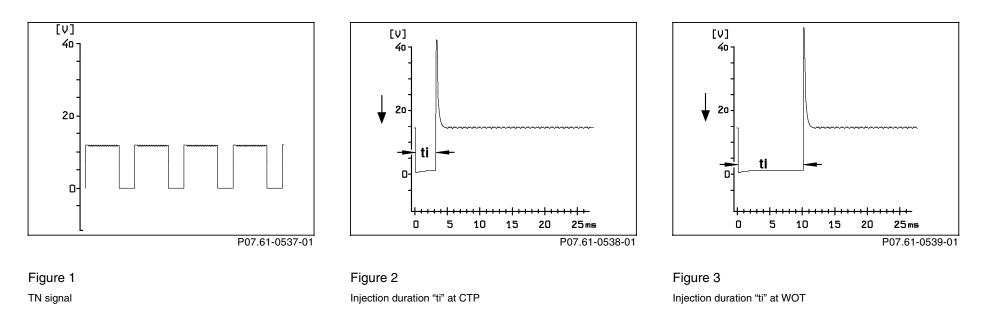
\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
26.0	P0 442 P0 445	Only (ISA), Model 140 and 129 as of 09/97 Right engine control module (N3/12) Purge system Leaks Activated charcoal canister shut-off valve (Y58/4) activated	N3/12 26 (Disconnect purge line (A) to charcoal canister on right purge control valve (Y58/3, left side of engine compartment). Connect vacuum tester to purge line (see 21). Ignition: ON Apply approx. 25 mbar of vacuum.	After approx. 1 minute, < 5 mbar vacuum loss.	Fuel tank cap, Purge line to charcoal canister, Purge line from charcoal canister to Y58/4, Activated charcoal canister, Y58/4, Fuel tank pressure sensor (B4/3)
27.0	РО ЧЧБ	Only (USA), Model 140 and 129 as of 09/97 Right engine control module (N3/12) Activated charcoal canister shut-off valve (Y58/4) Current draw	N3/12 	Ignition: ON	0.5 – 0.9 A	Fuses, Wiring, Y58/4

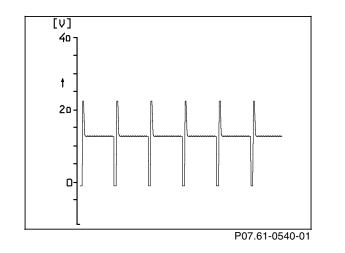
\Rightarrow		Test scope	Test connection		Test condition	Nominal value	Possible cause/Remedy
28.0	PO 450	Only (150), Model 140 and 129 as of 09/97 Right engine control module (N3/12) Fuel tank pressure sensor (B4/3) Sender signal	N3/12 53 - (- () + → (1.53) N3/12	> — 51 (1.51)	Disconnect purge line (A) to charcoal canister on right purge control valve (Y58/3, left side of engine compartment). Connect vacuum tester to purge line (see 21).	> 3 V	 ⇒ 28.1, Wiring, Vacuum line, Activated charcoal canister plugged, B4/3
		Activated charcoal canister shut-off valve (Y58/4) activated	26 (1.26)	34 (1.34)	Apply approx. 25 mbar of vacuum.		
28.1		Only (USA) Fuel tank pressure sensor (B4/3) Voltage supply	N3/12 53 € € +- (1.53)) — 44 (1.44)	Ignition: ON	4.7 – 5.3 V	N3/12

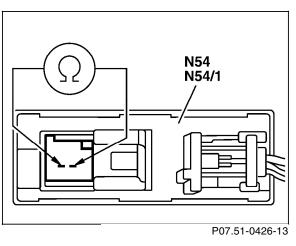
\Rightarrow		Test scope	Test connection		Test condition	Nominal value	Possible cause/Remedy
29.0	P0 450	Only ((ISA), Model 129 up to 09/97 Right engine control module (N3/12) Purge monitoring pressure sensor (B4/4) Sender signal	-		Disconnect purge line (A) to charcoal canister on purge monitoring pressure sensor (B4/4). Connect vacuum tester to purge monitoring pressure sensor (see 21). Ignition: ON Apply approx. 300 mbar of vacuum.	> 3.5 V < 3 V	Wiring, ⇒ 29.1, B4/4
29.1		Purge monitoring pressure sensor (B4/4) Voltage supply	-	— 44 (1.44)	Ignition: ON	4.7 – 5.3 V	N3/12

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
30.0	P0 600 P1 570 P1 588 P1 641 P1 747	CAN data bus	N3/11 N3/12 	Ignition: OFF Disconnect connector 1 from test cable and measure resistance directly at connector 1 (interior) using an ohmmeter. Wire connections: see 22.	75 – 85 Ω	\Rightarrow 30.1, \Rightarrow 30.2, Data line.
30.1		CAN element in RCL control module (N54) Resistance	N54 N54/1 L ∭∰ H @⁺►	Ignition: OFF Disconnect control module (N54 or N54/1) and test directly at pins (Figure 5).	115 – 125 Ω	N54 or N54/1
30.2		CAN element in engine control module (N3/11 or N3/12) Resistance	N3/11 N3/12 	Ignition: OFF Disconnect connector 1 (interior) from engine control module (N3/11 or N3/12) and test directly at pins.	235 – 245 Ω	N3/11 or N3/12

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
31.0	PI 163	Right engine control module (N3/12) Oil level switch (S43)	N3/12 32 - (-) - 25 (1.32) (1.25)	Ignition: ON Oil level okay. Oil level low.	11 – 14 V < 1 V	Wiring, S43
32.0	PI 177	Oil temperature sensor (B1) to ME control module (N3/12) Voltage	N3/12 	Ignition: ON	$ \begin{tabular}{cccc} & V \\ 10 & 3.9 \\ 20 & 3.5 \\ 30 & 3.1 \\ 40 & 2.7 \\ 50 & 2.3 \\ 60 & 1.9 \\ 70 & 1.5 \\ 80 & 1.2 \\ & \pm 5 \% \end{tabular} $	⇒ 32.1 N3/12
32.1		Oil temperature sensor (B1) Resistance	N3/12 	Ignition: ON	$\begin{array}{cccc} & \Omega \\ 10 & 3807 \\ 20 & 2510 \\ 30 & 1722 \\ 40 & 1195 \\ 50 & 854 \\ 60 & 614 \\ 70 & 450 \\ 80 & 335 \\ \pm 5 \% \end{array}$	Wiring, B1


\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
33.0	Fuel consumption signal up to 05/96	-	58 58	>0.5 V	Wiring, N3/12
34.0	Diagnosis line Activation	-	55 .55)	11 – 14 V	Wiring, N3/11 or N3/12
35.0	Only on left engine control module (N3/11) Coding	-	25 .25)	11 – 14 V	Wiring.


\Rightarrow		Test scope	Test connection		Test condition	Nominal value	Possible cause/Remedy
36.0	PI 605	Only on right engine control module (N3/12) until 05/96 (eliminated as of 06/96) Body acceleration sensor (B24/7) Sensor signal in static state Sensor signal in dynamic state	(1.53) N3/12 53 (() +-)-		Ignition: ON Vigorously move left front corner of vehicle by hand.	2.35 – 2.65 V > 5 mV i Value changes with movement of vehicle.	Wiring, ⇒ 36.1, B24/7
36.1		Voltage supply (B24/7)	-	— 44 (1.44)	Ignition: ON	4.7 – 5.3 V	N3/12
37.0	PI 437 PI 444	Not applicable to U.S.A. version vehicles					
37.1		Not applicable to U.S.A. version vehicles					


\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
38.0	Only model 140 on right engine control module (N3/12) until 05/96 (as of 06/96 via CAN) (only USA) Fuel tank cap open signal	N3/12 23 (() +- 25 (1.23) (1.25)		11 – 14 V < 1 V	Leak in purge system, ⇒ 26.0
39.0	Only on right engine control module (N3/12) until 05/96 (as of 06/96 via CAN) (only USA) "CHECK ENGINE" MIL (A1e26)	N3/12 ∭ 11 (()+-)- 25 (1.11) (1.25)	Ignition: ON	11 – 14 V	N3/12
40.0	Engine control module (ME-SFI) coding Bridge	N3/11 N3/12 ∭∰ 73 ((2) ⁺ -) 96 (2.73) (2.96)	Ignition: OFF	< 1 Ω	Wiring.

\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
41.0	Only model 129 on right engine control module (N3/12) (as of 06/98) Starter relay module (K38/1) Activation	N3/12 ↓ 104 (() +- 25 (2.104) (1.25)		11 – 14 V or if engine does not start for approx. 5 seconds.	⇒ 41.1, N3/12
41.1	Starter signal, circuit 50	N3/12 $38 - (- ()^{+}) - 14$ (1.38) (1.14)		11 – 14 V during the start sequence.	Wiring, Ignition/starter switch

23/26

Figure 4

Purge control valve signal

Figure	5
--------	---

N54 RCL control module

N54/1 DAS control module

Electrical Test Program – Ignition System Test

WARNING!

Risk of severe injury when touching ignition parts which produce high voltages. Do not touch ignition components.

Persons with heart pacemakers are not to perform repairs on this type of ignition system.

Risk of fatal injury from being pulled into rotating vehicle parts. Do not reach into rotating parts.

Wear closed and tight-fitting work clothes.

Protect vicinity of rotating vehicle components from unauthorized access.

WARNING!

Risk of explosion from fuel igniting, risk of poisoning from inhaling and swallowing fuel as well as risk of injury to eyes and skin from contact with fuel.

No fire, sparks, exposed flames or smoking.

Pour fuels only into suitable and appropriately marked containers. Wear protective clothing when handling fuel.

Note regarding "Test Connection" column:

The numbers indicated in parentheses, for example, \Rightarrow 1.0 (2A) signify:

- 2 = Socket 2 on wiring diagram.
- A = Connector A on wiring diagram

i

Connect interior harness connector to connection 1 on test cable. Connect engine harness connector to connection 2 on test cable.

Preparation for Test:

- 1. Review section 0,
- 2. Review 11, 21, 22,
- 3. Ignition: OFF,
- 4. Connect test cable with socket box to N3/11 or N3/12, see 22.

\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
1.0	Left engine control module (N3/11) or Right engine control module (N3/12) Voltage supply circuit 30	N3/11 N3/12 26 (() +- 35 (1.26) (1.35)		11 – 14 V	⇒ 1.1

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
1.1		Ground wire	$\begin{array}{c} N3/11 \\ N3/12 \\ \hline \\ 1.26 \\ (1.26) \end{array} X11/4 \\ \hline \\ 39 \\ (1.39) \end{array} X11/4 \\ \hline \\ -\overline{()^+} \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$	Ignition: ON	11 – 14 V	Wiring, Model 129 Ground (W27), module box bracket. Model 140 Harness ground (W15), right footwell. \Rightarrow 1.2
1.2		Voltage supply circuit 30	N3/11 N3/12 X11/4 \longrightarrow 1 - $(- 9^+) - 35$ (1.35)	Ignition: ON	11 – 14 V	Wiring, Base module (BM) (N16/1) or fuse on N16/1
2.0	PO 560 PI 581	Left engine control module (N3/11) or Right engine control module (N3/12) Voltage supply circuit 87L	N3/11 N3/12 38 - (- ① +)- 24 (1.38) (1.24)	Ignition: ON	11 – 14 V	⇒ 2.1

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
2.1		Electronics ground	N3/11 N3/12 38 - (-) - 2 (1.38)	Ignition: ON	11 – 14 V	Wiring, Model 129 and 140 Electronics ground (W15/1), right footwell \Rightarrow 2.2
2.2		Voltage supply Circuit 87L	N3/11 N3/12 X11/4 (1.24)	Ignition: ON Ignition: OFF	11 – 14 V < 1 V	Wiring, Base module (N16/1) or fuse on base module, Ignition/starter switch (S2/1)
3.0	PO 560 PI 587	Left engine control module (N3/11) or Right engine control module (N3/12) Voltage supply circuit 87M1e	N3/11 N3/12 39 - (-) - 36 (1.39) (1.36)	Ignition: ON Ignition: OFF	11 – 14 V < 1 V	Wiring.
4.0		Ignition coil (T1/1 or T1/7) Voltage supply	N3/11 N3/12 26 - (- () + → 83 (1.26) (2.83)	Ignition: ON Starter: Crank	11 – 14 V > 10 V	Wiring. Model 129 as of 09/95 and Model 140 as of 06/96 fused as follows: Model 129: fuse 34 Model 140: fuse 22

\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
5.0	Ignition coil (T1/2 or T1/8) Voltage supply	N3/11 N3/12 26 (() +-)- 94 (1.26) (2.94)	Ignition: ON Starter: Crank	11 – 14 V > 10 V	Wiring. Model 129 as of 09/95 and Model 140 as of 06/96 fused as follows: Model 129: fuse 34 Model 140: fuse 22
6.0	Ignition coil (T1/3 or T1/9) Voltage supply	N3/11 N3/12 26 - (() - 85 (1.26) (2.85)	Ignition: ON Starter: Crank	11 – 14 V > 10 V	Wiring. Model 129 as of 09/95 and Model 140 as of 06/96 fused as follows: Model 129: fuse 34 Model 140: fuse 22
7.0	Ignition coil (T1/4 or T1/10) Voltage supply	N3/11 N3/12 26 (① +-) 115 (1.26) (2.115)	Ignition: ON Starter: Crank	11 – 14 V > 10 V	Wiring. Model 129 as of 09/95 and Model 140 as of 06/96 fused as follows: Model 129: fuse 34 Model 140: fuse 22
8.0	Ignition coil (T1/5 or T1/11) Voltage supply	N3/11 N3/12 26 - 4 - 26 - 84 (1.26) (2.84)	Ignition: ON Starter: Crank	11 – 14 V > 10 V	Wiring. Model 129 as of 09/95 and Model 140 as of 06/96 fused as follows: Model 129: fuse 34 Model 140: fuse 22

Electrical Test Program – Ignition System Test

\Rightarrow		Test scope	Test connection		Test condition	Nominal value	Possible cause/remedy
9.0		Ignition coil (T1/6 or T1/12) Voltage supply	N3/11 N3/12 26 - (- () +	> — 95 (2.95)	Ignition: ON Starter: Crank	11 – 14 V > 10 V	Wiring. Model 129 as of 09/95 and Model 140 as of 06/96 fused as follows: Model 129: fuse 34 Model 140: fuse 22
10.0	PO 335 PI 300	Left CKP sensor (L5/4) Right CKP sensor (L5/5)	N3/11 ²⁾ N3/12 ²⁾ 78 - (-++++++++++++++++++++++++++++++++++) — 89 (2.89)	Starter: Crank Engine: at Idle	Signal, see Figure 1.	⇒ 10.1, Teeth on starter ring gear.
			N3/11 ³⁾ N3/12 ³⁾ (2.78))— 89 (2.89)	Starter: Crank Engine: at Idle	> 0.5 V > 7 V Increase in rpm = increase in voltage.	

²⁾ Test with oscilloscope.

³⁾ Test with multimeter only if oscilloscope is unavailable.

Electrical Test Program – Ignition System Test

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
10.1		Resistance of CKP sensor (L5/4 or L5/5)	N3/11 N3/12 78 (① +-) (2.78) (2	Ignition: OFF Unplug connector 2 on engine control 89 module (N3/11) or 39) (N3/12).	(at 20°C): 600 – 1200 Ω	L5/4 or L5/5
11.0	PD 341 PI 397	Left camshaft Hall-effect sensor (B6/2) or Right camshaft Hall-effect sensor (B6/3) Hall-effect signal	N3/11 ²⁾ N3/12 ²⁾ 87 - (- + -)- (2.87) (2	66 Engine: at Idle	Signal, see Figure 2.	⇒ 11.1, B6/2 or B6/3
			$N3/11^{3})$ $N3/12^{3})$ (2.66) (2.66) (1)	Engine: at Idle 25	1.3 – 1.7 V Value changes	

²⁾ Test with oscilloscope.

³⁾ Test with multimeter only if oscilloscope is unavailable.

\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
11.1	Voltage supply to camshaft Hall-effect sensor (B6/2 or B6/3)	B6/2 B6/3 1 (-() ⁺ -) 3	Ignition: ON Disconnect connector from Hall-effect sensor (B6/2 or B6/3) and test directly on sockets 1 and 3 of connector.	11 – 14 V	Wiring.
12.0	Closing duration for ignition coil (T1/1 or T1/7)	N3/11 N3/12 $33 - ()^+ - 25$ (2.83) (1.25)	Starter: Crank Engine: at Idle	20 – 100 ms 2 – 4 ms	⇒ 10.0, ⇒ 12.1, N3/11 or N3/12
12.1	Rest current shut-off: T1/1 or T1/7	N3/11 N3/12 33 - (-) - 25 (2.83) (1.25)	Ignition: ON Starter: Crank	0 V 0.3 – 0.5 V	T1/1 or T1/7, N3/11 or N3/12, < 0.3 V: wire from T1/1 to N3/12 or T1/7 to N3/11 open circuit, > 0.5 V: T1/1 or T1/7

\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
13.0	Closing duration for ignition coil (T1/2 or T1/8)	N3/11 N3/12 94 - (25) (2.94) (1.25)	Starter: Crank Engine: at Idle	20 – 100 ms 2 – 4 ms	⇒ 13.1, N3/11 or N3/12
13.1	Rest current shut-off: T1/2 or T1/8	N3/11 N3/12 94 (① +-)- 25 (2.94) (1.25)	Ignition: ON Starter: Crank	0 V 0.3 – 0.5 V	T1/2 or T1/8, N3/11 or N3/12, < 0.3 V: wire from T1/2 to N3/12 or T1/8 to N3/11 open circuit, > 0.5 V: T1/2 or T1/8
14.0	Closing duration for ignition coil (T1/3 or T1/9)	N3/11 N3/12 85 - (- + - + - 25) (2.85) (1.25)	Starter: Crank Engine: at Idle	20 – 100 ms 2 – 4 ms	⇒ 14.1, N3/11 or N3/12
14.1	Rest current shut-off: T1/3 or T1/9	N3/11 N3/12 (2.85) (1.25)	Ignition: ON Starter: Crank	0 V 0.3 – 0.5 V	T1/3 or T1/9, N3/11 or N3/12, < 0.3 V: wire from T1/3 to N3/12 or T1/9 to N3/11 open circuit, > 0.5 V: T1/3 or T1/9

\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
15.0	Closing duration for ignition coil (T1/4 or T1/10)	N3/11 N3/12	Starter: Crank	20 – 100 ms	⇒ 15.1, N3/11 or N3/12
			Engine: at Idle	2 – 4 ms	
15.1	Rest current shut-off: T1/4 or T1/10	N3/11 N3/12	Ignition: ON	0 V	T1/4 or T1/10, N3/11 or N3/12,
		115 (-) → 25 (2.115) (1.25)	Starter: Crank	0.3 – 0.5 V	< 0.3 V: wire from T1/4 to N3/12 or T1/10 to N3/11 open circuit, > 0.5 V: T1/4 or T1/10
16.0	Closing duration for ignition coil (T1/5 or T1/11)	N3/11 N3/12	Starter: Crank	20 – 100 ms	⇒ 16.1, N3/11 or N3/12
			Engine: at Idle	2 – 4 ms	

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
16.1		Rest current shut-off: T1/5 or T1/11	N3/11 N3/12 \swarrow 84 - ($ \bigcirc$) - 25 (2.84) (1.25)	Ignition: ON Starter: Crank	0 V 0.3 – 0.5 V	T1/5 or T1/11, N3/11 or N3/12, < 0.3 V: wire from T1/5 to N3/12 or T1/11 to N3/11 open circuit, > 0.5 V: T1/5 or T1/11
17.0		Closing duration for ignition coil (T1/6 or T1/12)	N3/11 N3/12 95 - (25) (2.95) (1.25)	Starter: Crank Engine: at Idle	20 – 100 ms 2 – 4 ms	⇒ 17.1, N3/11 or N3/12
17.1		Rest current shut-off: T1/6 or T1/12	N3/11 N3/12 95 - 4 - 25 (2.95) (1.25)	Ignition: ON Starter: Crank	0 V 0.3 – 0.5 V	T1/6 or T1/12, N3/11 or N3/12, < 0.3 V: wire from T1/6 to N3/12 or T1/12 to N3/11 open circuit, > 0.5 V: T1/6 or T1/12
18.0	PO 300 PO 301 PO 301	Primary voltage Ignition coil (T1/1 or T1/7)	N3/11 N3/12 83 - (- $^+$)- 25 (2.83) (1.25)	Test connection Note:Individual primary patternRange400 VDuration100%Starter:Crank	200 – 350 V	⇒ 18.1, N3/11 or N3/12

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
18.1		Primary winding of T1/1 and T1/2 or T1/7 and T1/8	N3/11 N3/12 33 - () - 94 (2.83) (2.94)	Ignition: OFF	$0.9 - 1.4 \Omega$ The resistance of a single coil is $0.5 - 0.7\Omega$	T1/1 or T1/2 and/or T1/7 or T1/8
19.0	90 300 90 302 90 308	Primary voltage Ignition coil (T1/2 or T1/8)	$\begin{array}{c} N3/11 \\ N3/12 \\ \hline \\ 94 - (& - + - + - 25 \\ (2.94) & (1.25) \end{array}$	Test connection Note:Individual primary patternRange400 VDuration100%Starter:Crank	200 – 350 V	⇒ 19.1, N3/11 or N3/12
19.1		Primary winding of T1/2 and T1/1 or T1/8 and T1/7	N3/11 N3/12 94 (→- ⁻ ^{(Ω)+} → 83 (2.94) (2.83)	Ignition: OFF	$0.9 - 1.4 \Omega$ The resistance of a single coil is $0.5 - 0.7\Omega$	T1/2 or T1/1 and/or T1/8 or T1/7
20.0	PO 300 PO 303 PO 309	Primary voltage Ignition coil (T1/3 or T1/9)	N3/11 N3/12 85 (Test connection Note:Individual primary patternRange400 VDuration100%Starter:Crank	200 – 350 V	⇒ 20.1, N3/11 or N3/12

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
20.1		Primary winding of T1/3 and T1/4 or T1/9 and T1/10	N3/11 N3/12 85 - (- @ +)- (2.85) 115 (2.115)	Ignition: OFF	$0.9 - 1.4 \Omega$ The resistance of a single coil is $0.5 - 0.7\Omega$	T1/3 or T1/4 and/or T1/9 or T1/10
21.0	P0 300 P0 304 P0 310	Primary voltage Ignition coil (T1/4 or T1/10)	N3/11 N3/12 115 - (- + + + + + + + + + + + + + + + + +	Test connection Note:Individual primary patternRange400 VDuration100%Starter:Crank	200 – 350 V	⇒ 21.1, N3/11 or N3/12
21.1		Primary winding of T1/4 and T1/3 or T1/10 and T1/9	N3/11 N3/12 115 - (@ + → 85 (2.115) (2.85)	Ignition: OFF	$0.9 - 1.4 \Omega$ The resistance of a single coil is $0.5 - 0.7\Omega$	T1/4 or T1/3 and/or T1/10 or T1/9
22.0	PO 300 PO 305 PO 311	Primary voltage Ignition coil (T1/5 or T1/11)	N3/11 N3/12 84 (25 (2.84) (1.25)	Test connection Note:Individual primary patternRange400 VDuration100%Starter:Crank	200 – 350 V	⇒ 22.1, N3/11 or N3/12

\Rightarrow		Test scope	Test connection		Test condition	Nominal value	Possible cause/remedy
22.1		Primary winding of T1/5 and T1/6 or T1/11 and T1/12	N3/11 N3/12) — 95 (2.95)	Ignition: OFF	$0.9 - 1.4 \Omega$ The resistance of a single coil is $0.5 - 0.7\Omega$	T1/5 or T1/6 and/or T1/11 or T1/12
23.0	PO 300 PO 306 PO 312	Primary voltage Ignition coil (T1/6 or T1/12)	N3/11 N3/12 95 (()) — 25 (1.25)	Test connection Note:Individual primary patternRange400 VDuration100%Starter:Crank	200 – 350 V	⇒ 23.1, N3/11 or N3/12
23.1		Primary winding of T1/6 and T1/5 or T1/12 and T1/11	N3/11 N3/12 95 - (- @+- (2.95)) — 84 (2.84)	Ignition: OFF	$0.9 - 1.4 \Omega$ The resistance of a single coil is $0.5 - 0.7\Omega$	T1/6 or T1/5 and/or T1/12 or T1/11


24/13

Electrical Test Program – Ignition System Test

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/remedy
	002 09 102 09 103 09 103 09 104 09 105 09 105 09 105 09 100 000 0000000000	Ignition coil (T1/1) to (T1/12)	Engine analyzer _ -⊕+ -	Test connection Note:Individual secondarypatternRange20 kVDuration100%Connect kV pick-upssuccessively to T1/1through T1/12.Starter:Crank	8 – 20 kV The resistance of the secondary winding can not be measured due to an installed diode.	Spark plugs, T1/1 to T1/12, N3/11 or N3/12

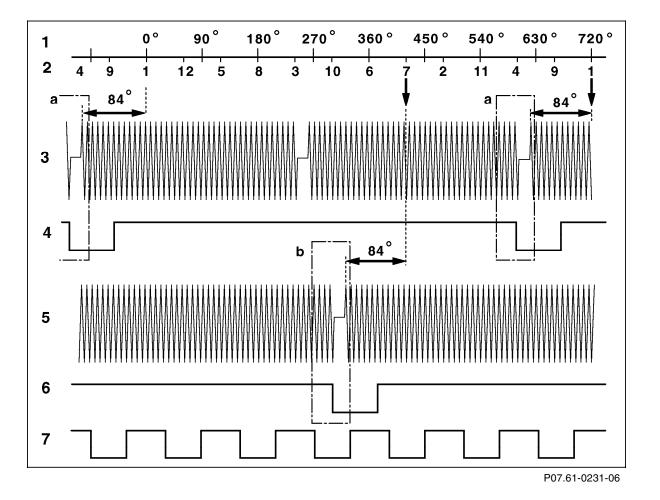
24/14

Electrical Test Program – Ignition System Test

Figure 1

Left CKP sensor (L5/4) and Right CKP sensor (L5/5) signal a=voltage, b=2 missing teeth for cylinder 1 or cylinder 7 recognition

Figure 2


Left camshaft Hall-effect sensor (B6/2) and Right camshaft Hall-effect sensor (B6/3) signal

Electrical Test Program – Ignition System Test

Signal survey

- 1 Crank angle (CKA)
- 2 Cylinder
- 3 Right CKP sensor (L5/5) signal
- 4 Right camshaft Hall-effect sensor (B6/3) signal
- 5 Left CKP sensor (L5/4) signal
- 6 Left camshaft Hall-effect sensor (B6/2) signal
- 7 Engine rpm signal TNA
- a Cylinder 1 recognition
- b Cylinder 7 recognition

Electrical Test Program – Electronic Accelerator (EA) Test

Risk of severe injury when touching ignition parts which produce high voltages. Do not touch ignition components.

Persons with heart pacemakers are not to perform repairs on this type of ignition system.

Risk of fatal injury from being pulled into rotating vehicle parts. Do not reach into rotating parts.

Wear closed and tight-fitting work clothes.

Protect vicinity of rotating vehicle components from unauthorized access.

Risk of explosion from fuel igniting, risk of poisoning from inhaling and swallowing fuel as well as risk of injury to eyes and skin from contact with fuel.

No fire, sparks, exposed flames or smoking.

Pour fuels only into suitable and appropriately marked containers. Wear protective clothing when handling fuel.

Note regarding "Test Connection" column:

The numbers indicated in parentheses, for example, \Rightarrow 1.0 (2A) signify:

- 2 = Socket 2 on wiring diagram.
- A = Connector A on wiring diagram

i	1
---	---

Connect interior harness connector to connection 1 on test cable. Connect engine harness connector to connection 2 on test cable.

Preparation for Test:

- 1. Review section 0,
- 2. Review 11, 21, 22,
- 3. Ignition: OFF,
- 4. Connect test cable with socket box to N3/11 or N3/12, see 22.

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
1.0	PO 560	Left engine control module (N3/11) or Right engine control module (N3/12) Voltage supply Circuit 30	N3/11 N3/12 26 - 35 (1.26) N3/11 N3/12 1.35	Ignition: ON	11 – 14 V	⇒ 1.1

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
1.1		Ground wire	N3/11 N3/12 26 - (-) - 2 (1.26) 39 - (-) - 2 (1.39) - 2	Ignition: ON	11 – 14 V	Wiring, Model 129: Ground (W27), module box bracket. Model 140: Harness ground (W15), right footwell. \Rightarrow 1.2
1.2		Voltage supply Circuit 30	N3/11 N3/12 X11/4 \longrightarrow > 35 (1.35)	Ignition: ON	11 – 14 V	Wiring, Base module (N16/1) or fuse on base module,
2.0	PI 587 PO 560	Left engine control module (N3/11) or Right engine control module (N3/12) Voltage supply Circuit 87L	N3/11 N3/12 $38 - (- ()^+) - 24$ (1.38) (1.24)	Ignition: ON	11 – 14 V	⇒ 2.1

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
2.1		Electronic ground	N3/11 N3/12 38 - (-) - 2 (1.38)	Ignition: ON	11 – 14 V	Wiring, Model 129, 140: Electronics ground (W15), right footwell. $\Rightarrow 2.2$
2.2		Voltage supply Circuit 87L	N3/11 N3/12 X11/4 (1.24)	Ignition: ON Ignition: OFF	11 – 14 V <1 V	Wiring, Base module (N16/1) or fuse on base module, Ignition/starter switch (S2/1).
3.0	PI 587 PO 560	Left engine control module (N3/11) or Right engine control module (N3/12) Voltage supply Circuit 87M1e	N3/11 N3/12 39 - (-) - 36 (1.39) (1.36)	Ignition: ON Ignition: OFF	11 – 14 V <1 V	Wiring.

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
4.0	PI 542 PO 507	Only RIGHT engine control module (N3/12) Pedal value sensor (B37) Signal Nominal value potentiometer 1	N3/12 18 (() +-) 19 (1.18) (1.19)	CTP:	0.2 – 0.5 V 4.3 – 4.8 V	Wiring, ⇒ 4.1, B37
4.1		Voltage supply Nominal value potentiometer 1	N3/12 18 (→- () → → 17 (1.18) (1.17		4.75 – 5.25 V	N3/12
5.0	PI 542 PO 507	Only LEFT engine control module (N3/11) Pedal value sensor (B37) Signal Nominal value potentiometer 2	N3/11 18 - (- () + →)- 19 (1.18) (1.19)	CTP:	0.1 – 0.4 V 2.1 – 2.5 V	Wiring, ⇒ 5.1, B37
5.1		Voltage supply Nominal value potentiometer 2	N3/11 18 - (- () +) - 2 (1.18) (1.4		2.25 – 2.75 V	N3/11

\Rightarrow		Test scope	Test connection		Test condition		Nominal value	Possible cause/Remedy
6.0	PD 120 P1 162	Right EA/CC/ISC actuator (M16/3) or Left EA/CC/ISC	N3/11 N3/12		Ignition: ON			Wiring, \Rightarrow 6.1, M16/4 or M16/3
	PI 186	actuator (M16/4) Signal Actual value potentiometer 1	98 - (- ⁻ (y) ⁺ → (2.98) N3/11 N3/12	> ── 97 (2.97)	Accelerator pedal position:	CTP: WOT:	4.0 – 4.6 V < CTP value	
		Actual value potentiometer 2	98 (- ⁻ (Y) ⁺ → (2.98)		Accelerator pedal position:		0.3 – 0.9 V > CTP value	
6.1		Voltage supply Actual value potentiometers 1 and 2	N3/11 N3/12 98 - (- ()+- (2.98)) — 106 (2.106)	Ignition: ON		4.75 – 5.25 V	N3/11 or N3/12

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
7.0	Pi 186 Pi 580 Pi 581	Right EA/CC/ISC actuator (M16/3) or Left EA/CC/ISC actuator (M16/4) Activation of actuator motor	N3/11 N3/12 $74 - (- 9^+ - 75)$ (2.74) (2.75)	Ignition: ON Engine: at Idle ECT > 70 °C	1.0 – 2.3 V 1.0 – 2.5 V Value oscillates.	Wiring, M16/3 or M16/4. N3/11 or N3/12
		Resistance of actuator motor	N3/11 N3/12 74 - (-) - 75 (2.74) (2.75	Ignition: OFF	< 10 Ω	
8.0	PO 500	Only right engine control module (N3/12) (up to 05/98) (as of 06/98 via CAN) Left front axle VSS sensor (L6/1)	N3/12 38 - (-) - 9 (1.38) (1.9)	Raise front of vehicle. Ignition: ON Spin left front wheel by hand.	4 – 8 V	Wiring, ESP see DM, Chassis & Drivetrain, Vol. 3, section 9 (ASR, ETS, ESP)
9.0	P0 500	Only right engine control module (N3/12) (up to 05/98) (as of 06/98 via CAN) Left rear axle VSS sensor (L6/3)	N3/12 38 - (- () +) - 22 (1.38) (1.22)	Raise rear of vehicle. Ignition: ON Spin left rear wheel by hand.	4 – 8 V	Wiring, ESP see DM, Chassis & Drivetrain, Vol. 3, section 9 (ASR, ETS, ESP)

\Rightarrow		Test scope	Test connection		Test condition	Nominal value	Possible cause/Remedy
10.0	РО 507 РІ БЧІ	CTP (idle) signal	N3/11 N3/12 38 - € () ⁺ + (1.38)	► 16 (1.16)		> 4.0 V 2.0 – 3.0 V	Wiring, N3/11 or N3/12
11.0		Only on RIGHT engine control module (N3/12) (up to 05/96) (as of 06/96 via CAN) A/C compressor signal	N3/12 38 -)— 8 (1.8)	Engine: at Idle Turn A/C system ON, move temperature selector wheel to MIN, blower set to AUTO.	< 1.0 V 11 – 14 V	Wiring, A/C pushbutton control module (N22).
12.0		Only on RIGHT engine control module (N3/12) (up to 05/96) EPC MIL (A1e43) Activation	N3/12 21 - ()*+ (1.21)	► 35 (1.35)	Ignition: ON Engine: at Idle	11 – 14 V < 1.0 V	Wiring, Malfunction in actuators or pedal value sensor, N3/12

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
13.0		Only on LEFT engine control module (N3/11) Coding	N3/11 45 - (-) - 25 (1.45) (1.25)		11 – 14 V	Wiring.
14.0		Ground bridge	N3/11 N3/12 73 - (- @ - 96 (2.73) (2.96)		<1Ω	Wiring.
15.0	PD 600 PI 570 PI 588 PI 641 PI 747	CAN data bus	N3/11 N3/12 60 (⁻ ⁻ ⁻)- 61 (1.60) (1.61)	Ignition: OFF Disconnect connector 1 from test cable and test directly at connector 1 of engine wiring harness using an ohmmeter, See 22	75 – 85 Ω	\Rightarrow 15.1, \Rightarrow 15.2, Data line.

\Rightarrow	Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
15.1	Model 129/140 up to 05/96 CAN element in RCL control module (N54) Resistance Model 129/140 as of 06/96 CAN element in DAS control module (N54/1) Resistance	N54 N54/1 ∭∰∰ L → ¯ H	Ignition: OFF Disconnect control module (N54 or N54/1) and test directly at control module.	115 – 125 Ω	N54 or N54/1
15.2	CAN element in engine control module (N3/11 or N3/12) Resistance	N3/11 N3/12 60 _ ← ① ⁺ → 61	Ignition: OFF Disconnect connector 1 from control module (N3/11 or N3/12) and test directly at control module.	235 – 245 Ω	N3/11 or N3/12

Electrical Test Program – Cruise Control (CC) Test

WARNING!

Risk of severe injury when touching ignition parts which produce high voltages. Do not touch ignition components.

Persons with heart pacemakers are not to perform repairs on this type of ignition system.

Risk of fatal injury from being pulled into rotating vehicle parts. Do not reach into rotating parts.

Wear closed and tight-fitting work clothes.

Protect vicinity of rotating vehicle components from unauthorized access.

MARNING!

Risk of explosion from fuel igniting, risk of poisoning from inhaling and swallowing fuel as well as risk of injury to eyes and skin from contact with fuel.

No fire, sparks, exposed flames or smoking.

Pour fuels only into suitable and appropriately marked containers. Wear protective clothing when handling fuel.

Note regarding "Test Connection" column:

The numbers indicated in parentheses, for example, \Rightarrow 1.0 (2A) signify:

- 2 = Socket 2 on wiring diagram.
- A = Connector A on wiring diagram

i

Connect interior harness connector to connection 1 on test cable. Connect engine harness connector to connection 2 on test cable.

Preparation for Test:

- 1. Review section 0,
- 2. Review 11, 21, 22,
- 3. Ignition: **OFF**,
- 4. Connect test cable with socket box to N3/11 or N3/12, see 22.

Electrical Test Program – Cruise Control (CC) Test

\Rightarrow		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
1.0	PO 565	CC switch (S40) V Decelerate/set	N3/10 26 (() ⁺ → 31 (1.26) (1.31)	Ignition: ON CC switch not activated. Decelerate activated.	< 1 V 11 – 14 V	Wiring, S40
		SP Memory recall	N3/10 26 - (-) - 30 (1.26) (1.30)	Memory activated.	11 – 14 V	
		B Accelerate/set	N3/10 26 (() +- 2 (1.26) (1.2)	Accelerate activated.	11 – 14 V	
		A Off	N3/10 38 - (→ ① → 28 (1.38) (1.28)	CC switch not activated. Off activated.	11 – 14 V < 1 V	
		Control contact	N3/10 38(()) +- 27 (1.38) (1.27)	CC switch not activated. CC switch in position: Activate decelerate/ accelerate/memory/off	< 1 V 11 – 14 V	

Electrical Test Program – Cruise Control (CC) Test

⇒		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
2.0	PI 584	Stop lamp switch (S9/1) N.C. contact	N3/12 1 - (- 26) (1.1) (1.26)	Ignition: ON Brake pedal not applied. Brake pedal applied.	< 1 V 11 – 14 V	Wiring, S9/1
2.1		N.O. contact	N3/12 26 - (-) - 3 (1.26) (1.3)	Ignition: ON Brake pedal not applied. Brake pedal applied.	11 – 14 V < 1 V	Wiring, S9/1

⇒		Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
3.0	PO 500	Only on RIGHT engine control module (N3/12) (up to 05/98) (as of 06/98 via CAN) Left front VSS signal	N3/11 38 - ← ← ♡ + → → 9 (1.38) (1.9)	Raise front of vehicle. Ignition: ON Spin left front wheel by hand.	4 – 8 V	Wiring, See DM, Chassis & Drivetrain, Vol. 3, section 9 (ASR, ETS, ESP).
3.1	PO 500	Only on RIGHT engine control module (N3/12) (up to 05/98) (as of 06/98 via CAN) Left rear VSS signal	N3/11 38 - (- () - 22 (1.38) (1.22)	Raise rear of vehicle. Ignition: ON Spin left rear wheel by hand.	4 – 8 V	Wiring, See DM, Chassis & Drivetrain, Vol. 3, section 9 (ASR, ETS, ESP).

Hydraulic Test Program – Preparation for Test (Fuel System Pressure and Internal Leakage Test)

WARNING!

Risk of severe injury when touching ignition parts which produce high voltages. Do not touch igntion components.

Persons with heart pacemakers are not to perform repairs on this

type of ignition system.

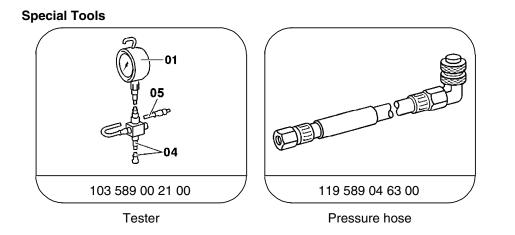
Risk of fatal injury from being pulled into rotating vehicle parts. Do not reach into rotating parts.

Wear closed and tight-fitting work clothes.

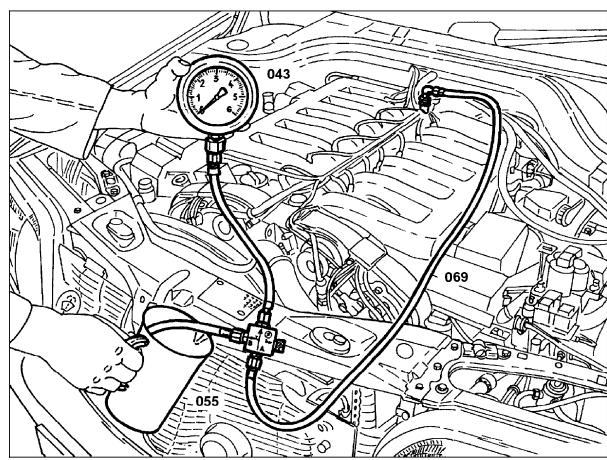
Protect vicinity of rotating vehicle components from unauthorized access.

Risk of explosion from fuel igniting, risk of poisoning from inhaling and swallowing fuel as well as risk of injury to eyes and skin from contact with fuel.

No fire, sparks, exposed flames or smoking.


Pour fuels only into suitable and appropriately marked containers.

Wear protective clothing when handling fuel.


Preparation for Test

- 1. Review 11, 21, 22, 23, 24, 31, 33,
- 2. Review section 0,
- 3. Connect pressure gauge to test connection.
- 4. After completing test, using measurement glass (055), release fuel pressure and allow residual fuel to drain into glass (see Figure 1).

Hydraulic Test Program – Preparation for Test (Fuel System Pressure and Internal Leakage Test)

Connection Diagram

Figure 1

- 043 Pressure gauge, part no. 103 589 00 21 00
- 055 Measurement glass
- 069 Pressure hose, part no. 119 589 04 63 00

P07.61-2059-06

Hydraulic Test Program – Test (Fuel System Pressure and Internal Leakage Test)

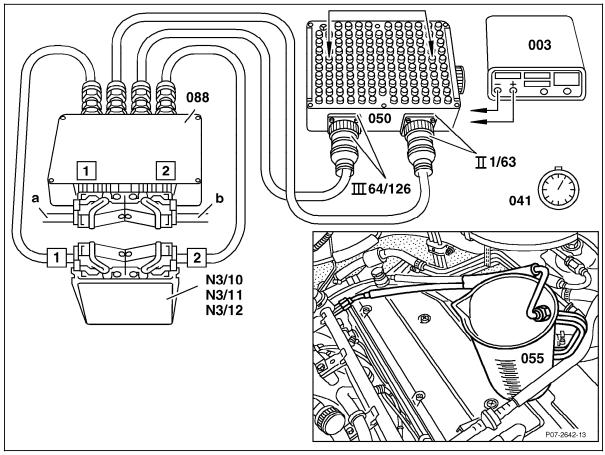
⇒	Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy 1)
1.0	Fuel pressure at idle (with vacuum)	Pressure gauge connected to test connection.	Engine: at Idle Valve on pressure gauge closed.	3.2 – 3.6 bar	Check fuel pumps: $34 \Rightarrow 1.0,$ $34 \Rightarrow 2.0,$ Replace diaphragm pressure regulator.
2.0	Fuel pressure at idle (without vacuum)	Pressure gauge connected to test connection.	Engine: at Idle Disconnect vacuum hose from diaphragm pressure regulator.	3.7 – 4.2 bar	Replace diaphragm pressure regulator.
3.0	Fuel system internal leakage	Pressure gauge connected to test connection.	Engine: OFF After 30 minutes	> 3.0 bar > 2.5 bar	If the pressure drops quickly: replace check valve in fuel pumps. If the pressure drops slowly, check injectors: $36 \Rightarrow 1.0$, $36 \Rightarrow 2.0$, Replace diaphragm pressure regulator or O-rings on diaphragm pressure regulator.

¹⁾ Observe Preparation for Test, see 31.

Hydraulic Test Program – Preparation forTest (Fuel Pump Test)

Connection Diagram – Delivery Test

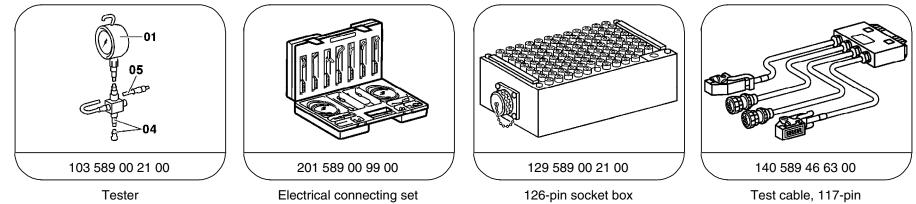
- 1. Review 32,
- 2. Connect test cable with socket box to right engine control module (N3/12).



003 Digital multimeter

- 041 Stop watch
- 050 Socket box tester, 126 pole
- 055 Measuring glass
- 088 Test cable
- a Interior wiring harness
- b Engine compartment wiring harness
- N3/11 Left engine control module (ME-SFI)
- N3/12 Right engine control module (ME-SFI)

III64/126


- and
- II1/63: Connection descriptions on socket box and test cable

Hydraulic Test Program – Preparation forTest (Fuel Pump Test)

Special Tools

Conventional tools, test equipment

Description	Brand, model, etc.	
Multimeter ¹⁾	Fluke models 23, 83, 85, 87	
Measuring glass (1 liter minimum)	Local purchase	
Stop watch	Local purchase	

¹⁾ Available through the MBUSA Standard Equipment Program.

Hydraulic Test Program – Test (Fuel Pump Test)

⇒	Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy 1)
1.0	Right engine control module (ME-SFI) (N3/12) (only) Fuel pumps Delivery capacity	N3/12 26 - () 24 (1.26) (1.24)	· · ·	1 liter of fuel within 35 seconds.	Check fuel lines for restrictions (kinks and dents). Replace fuel filter, \Rightarrow 2.0.
2.0	Fuel pumps Current draw		Disconnect fuel pump relay module (K27) and connect multimeter to sockets 1 and 3, see Figure 1 Ignition: ON	4 – 9 A	Fuel pumps.

¹⁾ Observe Preparation for Test, see 33.

Hydraulic Test Program – Test (Fuel Pump Test)

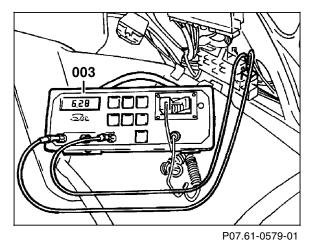


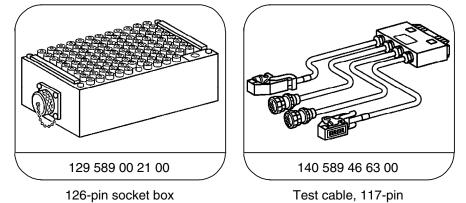
Figure 1 003 Multimeter

Hydraulic Test Program – Preparation for Test (Injector Test)

Preparation for Test

- 1. Review section 0,
- 2. Review 11, 21, 22, 23, 24, 31, 33,
- Connect socket box tester to engine control module (N3/12).
- 4. Fabricate test harness (O48) (see WF58.50-P-0761-01A).
- 5. Disconnect 2-pole connectors on injectors.
- 6. Remove fuel rail with injectors, thereby **not** disconnecting the fuel feed and return lines.
- 7. Connect self-made harness (048) to each injector one after another.
- 8. Hold each injector in measuring glass one after another.

Figure 1


048	Self made harness

- 050 Socket box tester, 126 pole
- 055 Measuring glass
- 088 Test cable
- N3/12 Right engine control module (ME-SFI) III64/126
- 11104/ and
- and
- II1/63: Connection description on socket box and test cable

P07.61-2051-06

Hydraulic Test Program – Preparation for Test (Injector Test)

Special Tools

Conventional tools, test equipment

Description	Brand, model, etc.	
Measuring glass (1 liter minimum)	Local purchase	

Hydraulic Test Program – Test (Injector Test)

⇒	Test scope	Test connection	Test condition	Nominal value	Possible cause/Remedy
1.0	Injectors Leakage test	N3/12 26	Fuel rail and fuel injectors removed. Ignition: ON	Injectors must not drip.	Replace dripping injectors, \Rightarrow 2.0.
2.0	Injectors Operation and spray pattern test	N3/12 26 24 (1.26) (1.24)	Ignition: ON Hold each injector (one after another) into a container and, using the self-made test harness, manually activate the injector by connecting harness banana plugs to socket box sockets 38 (–) and 25 (+).	Injectors must spray evenly (Figure 1).	Replace defective injectors.

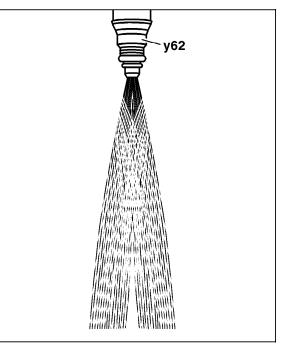


Figure 1 Y62 Injector Good spray pattern

P07.61-0542-02